精英家教网 > 初中数学 > 题目详情

如图,在?ABCD中,BE交对角线AC于点E,DF∥BE交AC于点F.
(1)写出图中所有的全等三角形(不得添加辅助线);
(2)求证:BE=DF.

(1)解:全等三角形有:△ABE≌△CDF,△AFD≌△CEB,△ABC≌△CDA,
理由是:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵AC=AC,
∴△ABC≌△CDA(SSS);
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAF=∠BCE,
∵DF∥BE,
∴∠AFD=∠CEB,
即∠AFD=∠CEB,∠DAF=∠BCE,AD=BC,
∴△AFD≌△CEB(AAS);
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
∵DF∥BE,
∴∠AFD=∠CEB,
∴∠AEB=∠DFC(等角的补角相等),
即∠BAE=∠DCF,∠AEB=∠CFD,AB=CD,
∴△ABE≌△CDF;

(2)证明:∵由(1)知:△AFD≌△CEB,
∴BE=DF.
分析:(1)根据平行四边形性质推出AD=BC,AB=CD,根据SSS证出△ABC≌△CDA即可;根据平行线性质推出∠AFD=∠CEB,∠DAF=∠BCE,根据AAS证出△AFD≌△CEB即可;求出∠AEB=∠DFC,∠BAE=∠DCF,根据AAS证出△ABE≌△CDF即可;
(2)由△AFD≌△CEB推出即可.
点评:本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质的应用,主要考查了学生的推理能力,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在?ABCD中,对角线AC、BD相交于点O,AB=
29
,AC=4,BD=10.
问:(1)AC与BD有什么位置关系?说明理由.
(2)四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在?ABCD中,∠A的平分线交BC于点E,若AB=10cm,AD=14cm,则EC=
4
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长春一模)感知:如图①,在菱形ABCD中,AB=BD,点E、F分别在边AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如图②,在菱形ABCD中,AB=BD,点E、F分别在BA、AD的延长线上.若AE=DF,△ADE与△DBF是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图③,在?ABCD中,AD=BD,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•犍为县模拟)甲题:已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
乙题:如图,在?ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G,H.
(1)求证:△BAE∽△BCF.
(2)若BG=BH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于点O,连接CE,则△CBE的周长是
2
13
+4
2
13
+4

查看答案和解析>>

同步练习册答案