精英家教网 > 初中数学 > 题目详情
16、如图,已知在△ABC中,∠ACB=90°,∠B=35°,为C为圆心、CA为半径的圆交AB于D点,则弧AD为
70
度.
分析:根据已知和三角形内角和定理即可求得∠ACD的度数,即得到了弧AD的度数.
解答:解:连接CD
∵∠ACB=90°,∠B=35°
∴∠A=90°-∠B=55°
∵CA=CD
∴∠A=∠CDA=55°
∴∠ACD=180°-2∠A=70°
∴弧AD的度数是70°
点评:本题利用了直角三角形,三角形内角和定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案