精英家教网 > 初中数学 > 题目详情
如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10
(1)求∠ABC的度数;
(2)求对角线AC的长;
(3)求菱形ABCD的面积.
分析:(1)由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=
1
2
AD,即可求得∠ADE=30°,继而求得答案;
(2)首先连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案;
(3)由S菱形ABCD=
1
2
AC×BO,即可求得答案.
解答:解:(1)∵四边形ABCD是菱形,
∴AB=BC=CD=DA,
∵E是AB的中点,且DE⊥AB,
∴AE=
1
2
AD,
∴∠ADE=30°,∠DAE=60°,
∴∠ABC=180°-60°=120°;

(2)连接BD,交AC于点O,
∵菱形ABCD中,∠DAE=60°,
∴∠CAE=30°,AB=10,
∴OB=5,
根据勾股定理可得:AO=
AB2-OB2
=5
3

即AC=10
3


(3)∵BD=2OB=10,
∴S菱形ABCD=
1
2
AC×BO=10
3
×5=50
3
点评:此题考查了菱形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,∠ABC=60°,E为AB边的中点,P为对角线BD上任意一点,AB=4,则PE+PA的最小值为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=
35
,BE=4,则tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在菱形ABCD中,AE⊥BC,垂足为F,EC=1,∠B=30°,求菱形ABCD的周长.

查看答案和解析>>

同步练习册答案