精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示,请回答下列问题:

(1)点P在AB上运动时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________ cm2
(2)求出点P在CD上运动时S与t的函数解析式;
(3)当t为________s时,△APD的面积为10cm2

解:(1)点P在AB上运动的速度为 6÷6=1cm/s,在CD上运动的速度为 6÷3=2cm/s,
当点P运动到点B时,△APD的面积S最大,最大值是×6×6=18cm2

(2)PD=6-2(t-12)=30-2t,
S=AD•PD=×6×(30-2t)=90-6t;

(3)当0≤t≤6时,S=3t,
△APD的面积为10cm2,即S=10时,
3t=10,t=
当12≤t≤15时,90-6t=10,t=
所以当t为(s)、(s)时,△APD的面积为10cm2
分析:(1)直接根据函数图象上坐标可求出点P在AB上运动的速度为 6÷6=1cm/s,在CD上运动的速度为 6÷3=2cm/s;
(2)用t表示PD=6-2(t-12)=30-2t,代入面积公式可求S=90-6t;
(3)通过图象可知,△APD的面积为10cm2.即S=10,分别在S=3t和S=90-6t,上代入即可求得t=,t=
点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案