精英家教网 > 初中数学 > 题目详情
10.(1)解方程:(x+1)2=5
(2)解方程:2x2+3=7x.

分析 (1)先开方,即可得出两个一元一次方程,求出方程的解即可;
(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.

解答 解:(1)(x+1)2=5
x+1=±$\sqrt{5}$,
x1=-1+$\sqrt{5}$,x2=-1-$\sqrt{5}$;

(2)2x2+3=7x,
2x2-7x+3=0,
(2x-1)(x-3)=0,
2x-1=0,x-3=0,
x1=$\frac{1}{2}$,x2=3.

点评 本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,三角形ABC的三个顶点都在正方形方格的格点上
(1)写出A、B、C三点的坐标;
(2)若△ABC各顶点的横坐标不变,纵坐标都乘以-1,请你再坐标系中描出对应的点A′、B′、C′,并依次连接这三个点,则所得的△A′B′C′与原△ABC有怎样的位置关系?
(3)在(2)的基础上,纵坐标都不变,横坐标都乘以-1,在同一坐标系中描出对应的点A″、B″、C″,并依次连接这三个点,所得的△A″B″C″与原△ABC有怎样的位置关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.
(1)在方格纸中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且△ABC的面积为6.
(2)在方格纸中画出△ABC的中线BD,并将△BCD向右平移1个单位长度得到△EFG(点B、C、D的对应点分别为E、F、G),画出△EFG,并直接写出△BCD和△EFG重叠部分图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知函数y=ax+b的图象经过二、三、四象限,那么y=ax2+bx+1的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.若点A(3,3 )是正比例函数y=x上一点,点M(m,0)与点N(0,n)分别在x轴与y轴上,且∠MAN=90°.

(1)如图1,当N点与原点O重合,求M点的坐标;
(2)如图2,已知m,n都为正数,连接MN,若MN=$\sqrt{30}$,求△MON的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解不等式组$\left\{\begin{array}{l}{5x-3≥2x}\\{\frac{3x-1}{2}<4}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知抛物线y=ax2+bx(a≠0)经过A(-2,0),B(-3,3),顶点为C.
(1)求抛物线的解析式;
(2)求点C的坐标;
(3)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知关于x的方程x2-(2k-3)x+k2+1=0有两个不相等的实数根x1、x2
(1)求k的取值范围;
(2)若x1、x2满足|x1|+|x2|=2|x1x2|-3,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,直线y=-x-1与双曲线$y=\frac{-2}{x}$交于A、B两点.
(1)求A、B两点的坐标.
(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
(3)连接OA、OB,求△AOB的面积.

查看答案和解析>>

同步练习册答案