如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点
P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若PC=
,求⊙O的半径和线段PB的长;
(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
![]()
解:(1)AB=AC。理由如下:
连接OB。
∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°。
∴∠OBP+∠ABP=90°,∠ACP+∠CPB=90°。
∵OP=OB,∴∠OBP=∠OPB。
∵∠OPB=∠APC,∴∠ACP=∠ABC。
∴AB=AC。
(2)延长AP交⊙O于D,连接BD,
设圆半径为r,则由OA=5得,OP=OB=r,PA=5-r。
又∵PC=
,
∴
。
由(1)AB=AC得
,解得:r=3。
∴AB=AC=4。
∵PD是直径,∴∠PBD=90°=∠PAC。
∵∠DPB=∠CPA,∴△DPB∽△CPA。∴
,即
,解得
。
(3)作线段AC的垂直平分线MN,作OE⊥MN,
则OE=
AC=
AB=
。
又∵圆O要与直线MN交点,∴OE=
≤r,
∴r≥
。
又∵圆O与直线l相离,∴r<5。
∴⊙O的半径r的取值范围为
≤r<5.
![]()
(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出
,求出r,证△DPB∽△CPA,得出
,代入求出PB即可。
(3)
根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,再根据相离得出r<5,即可得出答案。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com