【题目】某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.
(1)甲、乙两种笔记本的进价分别是多少元?
(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?
(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高元,在不考虑其他因素的条件下,当定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?
【答案】(1)甲种笔记本的进价为6元/本,乙种笔记本的进价为4元/本.
(2)28
(3)当x定为2元时,才能使该文具店每天销售甲、乙笔记本获取的利润最大,最大利润为1260元.
【解析】
(1)设甲种笔记本的进价为m元/本,则乙种笔记本的进价为(10-m)元/本,根据总价=单价×数量,即可得出关于m的一元一次方程,求解即可,
(2)设购入甲种笔记本n本,则购入乙种笔记本(60-n)本,根据花费不超过296元,即可得出关于n的一元一次不等式组,解之即可得出n的取值范围,再结合n为正整数,即可解题,
(3)设把两种笔记本的价格都提高x元的总利润为w元,根据总利润=单本利润×销售数量,即可得出w关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.
解:(1)设甲种笔记本的进价为m元/本,则乙种笔记本的进价为(10-m)元/本,
根据题意得:4(m+2)+3(10-m+1)=47,
解得:m=6,
∴10-m=4.
答:甲种笔记本的进价为6元/本,乙种笔记本的进价为4元/本.
(2)设购入甲种笔记本n本,则购入乙种笔记本(60-n)本,
根据题意得:6n+4(60-n)296,
解得: n≤28,
则利润=2n+(60-n)=n+60,
∵一次项系数大于0,
∴利润随n的增大而增大,
∵n为正整数,
∴n=28时, 该文具店获利最大为88,
(3)设把两种笔记本的价格都提高x元的总利润为w元,
根据题意得:w=(2+x)(350-50x)+(1+x)(150-40x)=-90(x-2)2+1260,
∵在w=-90(x-2)2+1260中,a=-90<0,
∴当x=2时,w取最大值,最大值为1260,
答:当x定为2元时,才能使该文具店每天销售甲、乙笔记本获取的利润最大,最大利润为,1260元.
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是( )
A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“三等分任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规直尺是不可能做出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个任意角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,当AB=BE=EF时,有∠FAN=∠MAN,请你证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=8cm,AC=6cm,动点P从点C出发沿CB方向以3cm/s的速度向点B运动,同时动点Q从点B出发沿BA方向以2cm/s的速度向点A运动,将△APQ沿直线AB翻折得△AP′Q,若四边形APQP′为菱形,则运动时间为( )
A. 1sB. sC. sD. s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是( )
A. B. 2C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是( ).
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:y=kx+1(k>0)与x轴、y轴分别相交于点A、B,tan∠ABO=.
(1)求k的值;
(2)若直线l:y=kx+1与双曲线y= ()的一个交点Q在一象限内,以BQ为直径的⊙I与x轴相明于点T,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com