解:(1)
,4.
(2)由题意得C(1,2),B(5,O),
设所求抛物线解析式为y=ax(x-5),
a=-
y=-
x
2+
x.
(3)直线AC:y=2.
直线AC与抛物线交于点C,D.
解得x
1=1,x
2=4.
∴CD=3.延长QM交x轴于点N.
①若MP⊥OB,则四边形AOPQ是矩形,
∴AQ=OP,
∴4-t=t,且t=2.
②若PM⊥BM,则MN
2=PN•BN.
∵
∴
PN=5-(1+t)-t=4-2t,BN=1+t,
∴(
)
2=(4-2t)(1+t),
∴t
1=-1(舍去),t
2=
.
综上所得,当t=2(秒),或t=
(秒)时,△PMB是直角三角形.
分析:(1)由于AC,OB是关于x的方程x
2-(k+2)x+5=0的两个根,则AC•OB=5,根据S
△AOC:S
△BOC=1:5,又可得出OB=5AC,因此可得出OB=5,AC=1.k+2=AC+OB=6,因此k=4;在直角三角形ACO中,根据OA=2,AC=1即可根据勾股定理求得OC=
.
(2)可根据O,C,B三点的坐标用待定系数法求出抛物线的解析式.
(3)本题要先求出CD的距离,关键是求出D的坐标,可根据直线AC的解析式和(2)得出的抛物线的解析式求出D点的坐标,然后用时间t表示出QD,CQ,OP,PB的长.
①如果MP⊥OB,此时四边形AOPQ是矩形,那么AQ=OP,可据此求出t的值.
②如果PM⊥BM,可延长QM交OB于N,则MN⊥OB,如果过C作OB的垂线设垂足为E,那么NE=CD-QD,可用含t的式子表示出NE的长,进而可表示出BN,NP的长,然后根据MN∥CE,依据平行线分线段成比例定理可得出MN:OC=BN:BE,可求出MN的长,在直角三角形BPM中由于MN⊥PB,可根据射影定理得出关于t的方程,从而求出t的值.
综上所述可求得符合条件的t的值.
点评:本题着重考查了待定系数法求二次函数解析式、直角三角形的性质、矩形的性质等知识点,综合性强,考查学生分类讨论,数形结合的数学思想方法.