精英家教网 > 初中数学 > 题目详情
计算与化简
(1)计算:(-2)3-2×(-4)÷
1
4

(2)化简求值:5a2-[3a-2(2a-
1
3
)-4a2].
考点:整式的加减,有理数的混合运算
专题:计算题
分析:(1)原式第一项利用乘方的意义化简,第二项从左到右依次计算即可得到结果;
(2)原式去括号合并即可得到结果.
解答:解:(1)原式=-8+32=24;
(2)原式=5a2-3a+4a-
2
3
+4a2=9a2+a-
2
3
点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

方程:①0.3x=1;②
x
2
=5x-1;③x2-4x=3;④-x=6;⑤x+2y=0.其中一元一次方程有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程组
2x-y=5…①
3x+2y=4…②

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AO平分∠BAC,BO平分∠ABC,AO,BO相交于点O,OE⊥AC于E,OD⊥BC于D,AC=BC,求证:AE=BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点A(2,0)、B(-1,1),点P是直线y=-x+4上任意一点.
(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;
(2)在(1)的条件下,求出△PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

2台大收割机和5台小收割机均工作2天共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5天,共收割小麦8公顷.
(1)1台大收割机和1台收割机每天各收割小麦多少公顷?
(2)设大收割机每台租金600/天,小收割机每台租金120/天,某农场准备租用两种收割机共15台,要求大收割机的数量不少于小收割机的一半,若每天总租金不超过5000元,若设大收割机要a台,①共有几种租赁方案?写出解答过程;②那种租赁方案每天收割小麦最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=
3
3
x+6的图象分别交x轴、y轴于A、B两点,点P从点A出发沿AO方向以每秒
3
单位长度的速度向点O匀速运动,同时点Q从点B出发沿BA方向以每秒2个单位长度向点A匀速运动,当其中一点到达终点时,另一点也停止运动,设运动时间为t秒,过点Q作QC⊥y轴,连接PQ、PC.
(1)点A的从标为
 
,点B的坐标为
 
,AB=
 

(2)四边形APCQ能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)若点D(0,2),点N在x轴上,直线AB上是否存在点M,使以M、N、B、D为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C在点A的右侧),点P是抛物线上一动点.
(1)求抛物线的解析式及点C的坐标
(2)若点P在第二象限内,如图2,过点P作PD⊥x轴于D,交AB于点E,当点P运动到什么位置时,线段PE最长?此时PE等于多少?
(3)如图3,如果平行于x轴的动直线a与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线a,使得△MON是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是
 
.(填番号)
①AC⊥DE;②
BE
HE
=
1
2
;③CD=2DH;④
S△BEH
S△BEC
=
DH
AC

查看答案和解析>>

同步练习册答案