精英家教网 > 初中数学 > 题目详情
现有一根长为1的铁丝:
①若把它围成图1所示的矩形框,当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大;
②若把它围成图2所示的矩形框,当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大;
③若把它围成图n所示的矩形框(图中共有n+1条宽),当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大.
【答案】分析:通过观察图形,分析、归纳并发现其中的规律.
解答:解:根据题意:①中有2(a+b)=1,且s=ab的最大值当且仅当矩形为正方形时,即a=b时取到;
②中,有2个a,有3个b,当且仅当矩形为正方形时,即2b=3a时,s=ab取得最大值;
故③中,按此规律,有2个a,有(n+1)个b,故当且仅当矩形为正方形时,即(n+1)b=2a时,s=ab取得最大值.
点评:此题考查了平面图形的有规律变化,应用规律解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

现有一根长为1的铁丝:
①若把它围成图1所示的矩形框,当矩形框的长a与矩形框的宽b满足a=
 
b时所围成的矩形框面积最大;
②若把它围成图2所示的矩形框,当矩形框的长a与矩形框的宽b满足a=
 
b时所围成的矩形框面积最大;
③若把它围成图n所示的矩形框(图中共有n+1条宽),当矩形框的长a与矩形框的宽b满足a=
 
b时所围成的矩形框面积最大.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

将现有一根长为1的铁丝.
(1)若把它截成四段然后围成图1所示的“口”形的矩形框,当矩形框的长a与矩形框的宽b满足a=
1
1
b时所围成的矩形框面积最大.
(2)若把它截成六段,①可以围成图2所示的“目”形的矩形框,当矩形框的长a与矩形框的宽b满足a=
2
2
b时所围成的矩形框面积最大; ②可以围成图3所示的“田”形矩形框,当矩形框的长a与矩形框的宽b满足a=
1
1
b时所围成的矩形框面积最大.

查看答案和解析>>

科目:初中数学 来源:2012年易学教育中考数学模拟试卷(20)(解析版) 题型:填空题

现有一根长为1的铁丝:
①若把它围成图1所示的矩形框,当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大;
②若把它围成图2所示的矩形框,当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大;
③若把它围成图n所示的矩形框(图中共有n+1条宽),当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(金山学校 来小权)(解析版) 题型:填空题

现有一根长为1的铁丝:
①若把它围成图1所示的矩形框,当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大;
②若把它围成图2所示的矩形框,当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大;
③若把它围成图n所示的矩形框(图中共有n+1条宽),当矩形框的长a与矩形框的宽b满足a=    b时所围成的矩形框面积最大.

查看答案和解析>>

同步练习册答案