精英家教网 > 初中数学 > 题目详情

已知AD是△ABC的高,AB=4,AC=3,AD=2,则△ABC的外接圆的直径是


  1. A.
    2
  2. B.
    4
  3. C.
    6
  4. D.
    8
C
分析:根据题意画出图形,连接OA并延长,与圆O交于M,连接BM,由AM为直径,根据直径所对的圆周角为直角,得到∠ABM为90°,又∠M和∠C都为所对的圆周角,根据同弧所对的圆周角相等可得∠M和∠C相等,进而得到两角的正弦值相等,根据锐角三角形函数定义可得出比例式,由已知AB,AC及AD的长即可求出直径AM的长.
解答:根据题意画出图形,如图所示:
连接AO,延长AO交⊙O于点M,连接BM.
∵AD是BC边上的高,
∴△ABD,△ADC都是直角三角形,
又∵AM是直径,则∠ABM=90°,
由圆周角定理知,∠C=∠M,
∴sinC=sinM==
又AC=3,AD=2,AB=4,
∴AM==6.
故选C
点评:此题考查了圆周角定理,以及锐角三角函数定义,利用了数形结合的思想,根据题意画出相应的图形,借助图形作出辅助线是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆精英家教网于点F,连接FB、FC.
(1)求证:FB=FC;
(2)求证:FB2=FA•FD;
(3)若AB是△ABC外接圆的直径,∠EAC=120°,BC=6cm,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

3、如图,已知AD是△ABC的中线,AE=EF=FC,下面给出三个关系式:①AG:AD=1:2;②GE:BE=1:4;③GE:BE=3:4,其中正确的为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图所示,已知AD是△ABC的中线,CE是△ACD的中线,S△ACE=4cm2,则S△ABC=
16
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是
AB=AC或∠B=∠C或AE=AF
(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,已知D是△ABC的边AB上一点,FC∥AB,DF交AC于点E,DE=EF.求证:E是AC的中点.
(2)如图,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.

查看答案和解析>>

同步练习册答案