如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).
![]()
(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;
(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.
科目:初中数学 来源:2014-2015学年广东省汕头市毕业班综合测试数学试卷(解析版) 题型:填空题
如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为 m.
![]()
查看答案和解析>>
科目:初中数学 来源:2014-2015学年广东省汕头市毕业班综合测试数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=
.
![]()
(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年广东省汕头市毕业班综合测试数学试卷(解析版) 题型:解答题
如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
![]()
(1)求证:BC是⊙O的切线;
(2)连接AF、BF,求∠ABF的度数;
(3)如果BE=10,sinA=
,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年广东省汕头市毕业班综合测试数学试卷(解析版) 题型:填空题
已知实数x,y满足|x-8|+
=0,则以x,y的值为两边长的等腰三角形的周长是 .
查看答案和解析>>
科目:初中数学 来源:2014-2015学年广东省汕头市毕业班综合测试数学试卷(解析版) 题型:选择题
从左到右的变形,是因式分解的为( )
A.(3-x)(3+x)=9-x2
B.(a-b)(a2+ab+b2)=a3-b3
C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)
D.4x2-25y2=(2x+5y)(2x-5y)
查看答案和解析>>
科目:初中数学 来源:2014-2015学年广东省清远市毕业班综合测试数学试卷(解析版) 题型:填空题
如图,AC是⊙O的切线,BC是直径,AB交⊙O于点D,∠A=50°,那么∠COD= .
![]()
查看答案和解析>>
科目:初中数学 来源:2014-2015学年广东省广州市毕业班综合测试数学试卷(解析版) 题型:解答题
如图,抛物线y=-x2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C.
![]()
(1)求该抛物线的解析式;
(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长;
(3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形?若存在,直接写出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com