精英家教网 > 初中数学 > 题目详情
某种商品在30天内每件销售价格P(元)与时间t(天)的函数关系用如图所示的两条线段表示,该商品在30天内日销售量Q(件)与时间t(天)之间的函数关系是Q=-t+40(0<t≤30,t是整数).
(1)求该商品每件的销售价格P与时间t的函数关系式,并写出自变量t的取值范围;
(2)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)
(1)当0<t<25时,设P=kt+b,则
b=20
25k+b=45

解得
b=20
k=1

则P=t+20;
当25≤t≤30时,设P=mt+n,则
25m+n=75
30m+n=70

解得
m=-1
n=100

则P=-t+100,
综上所述:P=
t+20(0<t<25)
-t+100(25≤t≤30)

(2)设销售额为S元
当0<t<25时,S=P•Q=(t+20)•(-t+40)=-t2+20t+800=-(t-10)2+900,
则当t=10时,Smax=900,
当25≤t≤30时,S=PQ=(100-t)(-t+40)=t2-140t+4000=(t-70)2-900,
则当t=25时,Smax=1125>900,
综上所述,第25天时,销售额最大为1125元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-(m-2)x+m的图象经过(-1,15),
(1)求m的值;
(2)设此二次函数的图象与x轴的交点为A、B,图象上的点C使△ABC的面积等于1,求C点的坐标;
(3)当△ABC的面积大于3时,求点C横坐标的取值范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+c(a≠0)与直线y=kx+b(k≠0)相交于A(2,1)、B(1,-1)两点,你能求出抛物线和直线的函数表达式吗?画出草图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面之间坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)点C的坐标为______;
(2)若抛物线y=ax2+bx经过C,A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,求出此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=______.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
4
3
,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+5x+m经过点A(1,0),与y轴交于点B,
(1)求m的值;
(2)若抛物线与x轴的另一交点为C,求△CAB的面积;
(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是(  )
A.y=x+1B.y=x-1C.y=x2-x+1D.y=x2-x-1

查看答案和解析>>

同步练习册答案