
解:(1)延长AF、AG,与直线BC相交于M、N,
∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF
∴MB=AB
∴AF=MF
同理:CN=AC,AG=NG,
∴FG=

MN,
=

(BM+CN-BC),
=

(AB+AC-BC),
∴线段FG与△ABC三边的数量关系是FG=

(AB+AC-BC);

(2)延长AF、AG,与直线BC相交于M、N,
同样由(1)中可知,MB=AB,AF=MF,CN=AC,AG=NG
∴FG=

MN,
=

(CN+BC-BM),
=

(AC+BC-AB).
∴线段FG与△ABC三边的数量关系是FG=

(AC+BC-AB).
分析:(1)先延长AF、AG,与直线BC相交于M、N,再由AF⊥BD,∠ABF=∠MBF,得到∠BAF=∠BMF,进一步推出MB=AB,AF=MF,同理CN=AC,AG=NG即可得出答案;
(2)与(1)的方法类同,即可证出答案.
点评:本题主要考查了三角形的中位线定理,三角形的内角和定理,等腰三角形的性质和判定等知识点,解此题的关键是作辅助线转化成三角形的中位线.