精英家教网 > 初中数学 > 题目详情
(2013•历城区三模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是(  )
分析:根据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.
解答:解:根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故A选项正确;

又∵从M到N的变化是2,
∴ED=2,
∴AE=AD-ED=5-2=3,
在Rt△ABE中,AB=
BE2-AE2
=
52-32
=4,
∴cos∠ABE=
AB
BE
=
4
5
,故B选项错误;

如图(1)过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=
AB
BE
=
4
5

∴PF=PBsin∠PBF=
4
5
t,
∴当0<t≤5时,y=
1
2
BQ•PF=
1
2
t•
4
5
t=
2
5
t2,故C选项正确;

t=
29
4
秒时,点P在CD上,此时,PD=
29
4
-BE-ED=
29
4
-5-2=
1
4

PQ=CD-PD=4-
1
4
=
15
4

AB
AE
=
4
3
BQ
PQ
=
4
3

AB
AE
=
BQ
PQ

又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故D选项正确.
故选B.
点评:本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E时点Q到达点C是解题的关键,也是本题的突破口.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•历城区三模)方程组
x-y=2
2x+y=4
的解是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区三模)如图,已知直角梯形ABCD中,AD∥BC,∠BAD=90°,AD=2,AB=4,BC=5,点P为AB边上一动点,连接PC、PD,若△PCD为直角三角形,则满足条件的点P有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区三模)如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形AnBnDnCn的边长是
1
3n
1
3n

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区三模)(1)先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b=
2

(2)解不等式组:
x-1
2
≤1
x-2<4(x+1)
并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区三模)如图,已知点(1,2)在函数y=
k
x
(x>0)的图象上,矩形ABCD的边BC在x正半轴上,E是对角线AC、BD的交点,函数y=
k
x
(x>0)的图象又经过A,E两点,点E的纵坐标为m.
(1)求k的值;
(2)求点A的坐标(用m表示);
(3)是否存在实数m,使四边形ABCD为正方形?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案