精英家教网 > 初中数学 > 题目详情
半径为6cm的圆,120°的圆心角所对的弧长是       cm .(结果保留π)

试题分析:
点评:本题主要考查了弧长公式
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知OA、OB是⊙O的两条半径,且OA⊥BC,C为OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD,交OC过于点E。

(1)求证:CD=CE;
(2)若将图1中的半径OB所在的直线向上平行移动,交⊙O于,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,

(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

扇形的弧长为20πcm,面积为240πcm2,则扇形的半径为         cm。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于(      )

A.        B.      C.    B.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,
正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径为2,点A的坐标为(2, ),直线AB为⊙O的切线,B为切点。则B点的坐标为
A.(B.(
C.(D.(

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

1471年,德国数学家米勒提出了雕塑问题:假定有一个雕塑高AB=3米,立在一个底座上,底座的高BC=2.2米,一个人注视着这个雕塑并朝它走去,这个人的水平视线离地1.7米,问此人应站在离雕塑底座多远处,才能使看雕塑的效果最好,所谓看雕塑的效果最好是指看雕塑的视角最大,问题转化为在水平视线EF上求使视角最大的点,如图:过A、B两点,作一圆与EF相切于点M,你能说明点M为所求的点吗?并求出此时这个人离雕塑底座的距离?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以O为圆心,半径为2的圆与反比例函数y=(x>0)的图象交于A、B两点,则的长度为       (    )   

A.π         B.π         C.π        D. π

查看答案和解析>>

同步练习册答案