精英家教网 > 初中数学 > 题目详情

已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)

证明:作GH⊥AB,连接EO.
∵EF⊥AB,EG⊥CO,
∴∠EFO=∠EGO=90°,
∴G、O、F、E四点共圆,
所以∠GFH=∠OEG,
又∵∠GHF=∠EGO,
∴△GHF∽△OGE,
∵CD⊥AB,GH⊥AB,
∵GH∥CD,
==
又∵CO=EO,
∴CD=GF.
分析:首先根据四点共圆的性质得出GOFE四点共圆,进而求出△GHF∽△OGE,再利用GH∥CD,得出==,即可求出答案.
点评:此题主要考查了相似三角形的判定以及其性质和四点共圆的性质,根据已知得出GOFE四点共圆是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD是半圆O的直径,A是BD延长线上的一点,BC⊥AE,交AE的延长线于点C,交半圆O于点E,且E为
DF
的中点.
(1)求证:AC是半圆O的切线;
(2)若AD=6,AE=6
2
,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知;如图,AB是半圆O的直径,弦CD∥AB,直线CM、DN分别切半圆于点C、D,且分别和直线AB相交于点M、N.
(1)求证;MO=NO;
(2)设∠M=30°,求证:MN=4CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是半圆O上的直径,E是
BC
的中点,半径OE交弦BC于点D,过点C作⊙O的切线精英家教网交OE的延长线于点F.BC=8,DE=2.
(Ⅰ)求⊙O的半径;
(Ⅱ)求点F到⊙O的切线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是半圆O的直径,D是AB延长线上的一点,AE⊥DC,交DC的延长线于点E,交半圆O于点F,且C为
BF
的中点.
(1)求证:DE是半圆O的切线;
(2)请说明∠EAC=∠BCD的理由.

查看答案和解析>>

同步练习册答案