精英家教网 > 初中数学 > 题目详情
30、如图,AB∥CD,∠B+∠D=180°,则 BC与DE平行吗?为什么?
分析:根据两直线AB∥CD,推知内错角∠B=∠C;又由已知条件∠B+∠D=180°及等量代换证明同旁内角∠C+∠D=180°,所以两直线 BC∥DE.
解答:证明:BC与DE能平行.
理由:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等);
又∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴BC∥DE(同旁内角互补,两直线平行).
点评:本题考查了平行线的判定与性质.解答本题的关键是找出∠C与∠D的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB∥CD,AD与BC相交于点E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

34、如图,AB∥CD,P是BC上的一个动点,设∠CDP=∠1,∠CPD=∠2,请你猜想出∠1、∠2与∠B之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠1=58°,则∠2的度数是(  )

查看答案和解析>>

同步练习册答案