精英家教网 > 初中数学 > 题目详情
已知反比例函数y=
k
2x
和一次函数y=2x-1,其中一次函数的图象经过(a,b)、(a+1,b+k)精英家教网两点.
(1)求反比例函数的解析式;
(2)若两个函数图象在第一象限内的交点为A(1,m),请问:在x轴上是否存在点B,使△AOB为直角三角形?若存在,求出所有符合条件的点B的坐标;
(3)若直线y=-x+
1
2
交x轴于C,交y轴于D,点P为反比例函数y=
k
2x
(x>0)的图象上一点,过P作y轴的平行线交直线CD于E,过P作x轴的平行线交直线CD于F,求证:DE•CF为定值.
分析:(1)把(a,b)、(a+1,b+k)分别代入y=2x-1,转化为关于未知系数的方程组解答;
(2)求出A点坐标,即可根据图形特征找到B点坐标;
(3)作FM⊥x轴于M,EN⊥y轴于N,构造等腰直角三角形,根据等腰直角三角形的性质,将DE•CF转化为反比例函数系数的倍数解答.
解答:精英家教网解:(1)∵y=2x-1的图象经过(a,b)、(a+1,b+k)两点,
2a-1=b
2(a+1)-1=b+k

∴k=2,
∴反比例函数的解析式为y=
1
x


(2)∵A(1,m)在反比例函数y=
1
x
上,
∴A(1,1),
若∠ABO=90°,则B(1,0);
若∠OAB=90°,则B(2,0).
∴在x轴上存在点B,使△AOB为直角三角形,且满足条件的点B有两个,
即:B1(1,0),B2(2,0);

(3)设P(x,y),
∵直线y=-x+
1
2
交x轴于C,交y轴于D,
∴C(0.5,0),D(0,0.5),
∴△OCD为等腰直角三角形.
作FM⊥x轴于M,EN⊥y轴于N,
则△FMC、△DEN为等腰直角三角形,
∴FC=
2
FM=
2
y,DE=
2
EN=
2
x,
∴DE•CF=2xy,
∵P(x,y)在y=
1
x
上,
∴xy=1,
∴DE•CF=2.
点评:本题考查了用待定系数法求解析式和函数图象的交点坐标与函数解析式组成的方程组的解的关系,构造等腰直角三角形也是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案