精英家教网 > 初中数学 > 题目详情

在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.
解答:若在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,
则可以过点A作关于y轴的对称点,再连接B和作出的对称点连线和y轴的交点即为所求,
由给出的四个选项可知选项C满足条件.
故选C.
点评:本题考查了轴对称-最短路线问题,在一条直线上找一点使它到直线同旁的两个点的距离之和最小,所找的点应是其中已知一点关于这条直线的对称点与已知另一点的交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、在直角坐标系中有A(3,0)和B(0,4)两点,在坐标轴上有一点C,使以A,B,C为顶点的三角形是等腰三角形,则这样的C点有
6
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中有一块三角板GEF按图1放置,其中∠GEF=60°,∠G=90°,EF=4.随后三角板的点E沿y轴向点O滑动,同时点F在x轴的正半轴上也随之滑动.当点E到达点O时,停止滑动.
(1)在图2中,利用直角三角形外接圆的性质说明点O、E、G、F四点在同一个圆上,并在图2中用尺规方法作出该圆,(不写作法,保留作图痕迹);
(2)滑动过程中直线OG的函数表达式能确定吗?若能,请求出它的表达式;若不能,请说明理由;
(3)求出滑动过程中点G运动的路径的总长;
(4)若将三角板GEF换成一块∠G=90°,∠GEF=α的硬纸板,其它条件不变,试用含α的式子表示点G运动的路径的总长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•德州)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,
①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;
②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B的距离之和最小,现有如下四种方案,其中正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系中有A(-3,1),B(3,1)两点,则在坐标轴上与A、B两点距离相等的点的个数为(  )

查看答案和解析>>

同步练习册答案