精英家教网 > 初中数学 > 题目详情

平面直角坐标系中,⊙O的圆心在坐标原点,半径为2,点A的坐标为数学公式,直线AB为⊙O的切线,B为切点.则B点的坐标为________.

(2,0)、(-1,
分析:由直线AB为⊙O的切线,根据从圆外一点可以作圆的两条切线,所以我们可以画出大致图形,结合图形,作出辅助线,利用三角形相似可以得出.
解答:解:过点A作圆的两条切线,AB,AC,切点分别为点B,C,连接OC,作CD⊥AB于点D,
∴AB⊥OB,CD⊥AB,OC⊥AC
∵圆半径为2,点A的坐标为(2,2),
∴B点坐标为(2,0)
又∵∠ACD+∠DCO=90°,∠ACD+∠A=90°,
∴∠DCO=∠A,∠ADC=∠CEO
∴△OEC∽△CDA

假设CE=x,OE=y,
∵AD=AB-BD=2-y,CD=2+x,CO=2,AC=2

解以上方程可以求出:x=1,y=
所以C点的坐标为(-1,),
故答案为:(2,0),(-1,
点评:此题主要考查了切线长定理,相似三角形的判定,以及利用相似求对应线段的长度,题目综合性较强,质量挺高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)试设计一种平移使(2)中的抛物线经过四边形ABCO的对角线交点;
(4)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,四边精英家教网形BEFG是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,则第四个顶点的坐标可以是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

8、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:
1、f(a,b)=(-a,b).如:f(1,3)=(-1,3);
2、g(a,b)=(b,a).如:g(1,3)=(3,1);
3、h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).
按照以上变换有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、在平面直角坐标系中,将直线y=-2x+1向下平移4个单位长度后.所得直线的解析式为
y=-2x-3

查看答案和解析>>

科目:初中数学 来源: 题型:

13、下列说法中,正确的有(  )
①无限小数不一定是无理数
②矩形具有的性质平行四边形一定具有.
③平面直角坐标系中的点与有序实数对是一一对应的.
④一个数平方根与这个数的立方根相同的数是0和1.

查看答案和解析>>

同步练习册答案