精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径等于4,tan∠ACB=
43
,求CD的长.
分析:(1)应该是相切,连接OB证OB⊥BD即可.本题的基本思路是通过平行线,弦切角定理,等边对等角,来得出相等的角,然后将这些相等的角进行置换,最终转换到一个三角形中,根据三角形的内角和来求出度数.从而得出∠OBD=90°的结论.
(2)有了∠ACB的正切值也就有了∠D的正切值,那么可在直角三角形OBD中,有半径的长,有∠D的正切值,可用正弦函数求出OD的长,也就求出了CD的长.
解答:精英家教网解:(1)直线BD与⊙O相切.
证明:如图,连接OB.
∵∠OCB=∠CBD+∠D,∠1=∠D,
∴∠2=∠CBD,
∵AB∥OC,
∴∠2=∠A,
∴∠A=∠CBD.
∵OB=OC,
∴∠BOC+2∠3=180°.
∵∠BOC=2∠A,
∴∠A+∠3=90°.
∴∠CBD+∠3=90°.
∴∠OBD=90°.
∴直线BD与⊙O相切.

(2)∵∠D=∠ACB,tan∠ACB=
4
3

∴tanD=
4
3

∵∠OBD=90°,OB=4,tanD=
4
3

∴sinD=
4
5
,OD=
OB
sinD
=5.
∴CD=OD-OC=1.
点评:本题考查的是切线的判定以及解直角三角形,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•东阳市模拟)已知:如图,AB为⊙O的直径,AC、BC为弦,点P为⊙O上一点,弧AC=弧AP,AB=10,tanA=
3

(1)求PC的长;
(2)过P作⊙O切线交BA延长线于E,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为⊙O直径,AC为弦,M为弧AC上一点,若∠CAB=40度,则∠AMC的度数为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB为半圆O的直径,C、D是半圆上的两点,E是AB上除O外的一点,AC与DE交于点F.①
AD
=
DC
;②DE⊥AB;③AF=DF.请你写出以①、②、③中的任意两个条件,推出第三个(结论)的一个正确命题.并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB为⊙O的直径,AO为⊙O'的直径,⊙O的弦AC交⊙O'于D点,OC和BD相交于E点,AB=4,∠CAB=30°.求CE、DE的长.

查看答案和解析>>

同步练习册答案