精英家教网 > 初中数学 > 题目详情
在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)
分析:首先根据题意画出图形,过点A作AC⊥OB于点C,由△ABO是正三角形,点B的坐标是(-2,0),即可求得OC与AC的长,继而求得答案.
解答:解:如图,过点A作AC⊥OB于点C,
∵△OAB是正三角形,
∴OA=OB=2,OC=BC=
1
2
OB=1,
∴AC=
OA2-OC2
=
3

∴点A的坐标是;(-1,
3
),
同理:点A′的坐标是(-1,-
3
),
∴点A的坐标是(-1,
3
)或(-1,-
3
).
故答案为:(-1,
3
)或(-1,-
3
).
点评:此题考查了等边三角形的性质与勾股定理.此题难度不大,注意掌握数形结合思想与分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△精英家教网OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.
(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

8、在直角坐标系中,O为坐标原点,已知点A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.
(1)求tan∠FOB的值;
(2)用含t的代数式表示△OAB的面积S;
(3)是否存在点B,使以B,E,F为顶点的三角形与△OFE相似?若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,矩形AOBC在直角坐标系中,O为原点,A在x轴上,B在y轴上,直线AB的函数关系式为y=-
43
x+8
,M是OB上的一点,若将梯形AMBC沿AM折叠,点B恰好落在x轴上的精英家教网点B′处,C的对应点为C′.
(1)求出B′点和M点的坐标;
(2)求直线A C′的函数关系式;
(3)设一动点P从A点出发,以每秒1个单位速度沿射线AB方向运动,过P作PQ⊥AB,交射线AM于Q;
①求运动t秒时,Q点的坐标;(用含t的代数式表示)
②以Q为圆心,以PQ的长为半径作圆,当t为何值时,⊙Q与y轴相切?

查看答案和解析>>

同步练习册答案