ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êԵ㣮
£¨1£©ÈôµãPµÄ×ø±êΪ£¨1£¬2£©£¬½«Ïß¶ÎOPÈÆÔµãOÄæÊ±ÕëÐýת90¡ãµÃµ½Ïß¶ÎOQ£¬ÔòµãQµÄ×ø±êΪ
£®
£¨2£©Èô¹ýµãPµÄÖ±ÏßL
1µÄº¯Êý½âÎöʽΪy=2x£¬Çó¹ýµãPÇÒÓëÖ±ÏßL
1´¹Ö±µÄÖ±ÏßL
2µÄº¯Êý½âÎöʽ£»
£¨3£©ÈôÖ±ÏßL
1µÄº¯Êý½âÎöʽΪy=x+4£¬Ö±ÏßL
2µÄº¯Êý½âÎöʽΪy=-x-2£¬ÇóÖ¤£ºÖ±ÏßL
1ÓëÖ±ÏßL
2»¥Ïà´¹Ö±£»
£¨4£©ÉèÖ±ÏßL
1µÄº¯Êý¹ØÏµÊ½Îªy=k
1x+b
1£¬Ö±ÏßL
2µÄº¯Êý¹ØÏµÊ½Îªy=k
2x+b
2£¨k
1•k
2¡Ù0£©£®¸ù¾ÝÒÔÉϵĽâÌâ½áÂÛ£¬ÇëÄãÓÃÒ»¾ä»°À´×ܽá¸ÅÀ¨£ºÖ±ÏßL
1ºÍÖ±ÏßL
2»¥Ïà´¹Ö±Óëk
1¡¢k
2µÄ¹ØÏµ£®
£¨5£©ÇëÔËÓã¨4£©ÖеĽáÂÛÀ´½â¾öÏÂÃæµÄÎÊÌ⣺
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨-3£¬-6£©£¬µãBµÄ×ø±êΪ£¨7£¬2£©£¬ÇóÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏߵĺ¯Êý½âÎöʽ£®