精英家教网 > 初中数学 > 题目详情
(2008•佛山)某地为了解当地推进“阳光体育”运动情况,就“中小学生每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见下表):

请根据上述信息解答下列问题:
(1)B组的人数是______人;
(2)本次调查数据(指体育活动时间)的中位数落在______组内;
(3)若某地约有64 000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?
【答案】分析:由题意可知:(1)B组的人数=300-30-150-90;
(2)根据中位数定义求解;
(3)300名中小学生中达到国家规定体育活动时间的人数为150+90=240人,占300人的=0.8,则64000名中小学达到国家规定体育活动时间(不低于1小时)的人数约有0.8×64000=51200人.
解答:解:(1)B组的人数=300-30-150-90=30人;

(2)A、B两组的人数为30+30=60人,而D的人数为90人,所以中位数是第150、151名同学的活动时间的平均数,本次调查数据(指体育活动时间)的中位数落在C组内;
故填30;C.

(3)达到国家规定体育活动时间(不低于1小时)的人数约有×64000=51200人.
点评:在生活中经常用到用样本估计总体的方法来解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2010年河南省中考数学模拟试卷(11)(解析版) 题型:解答题

(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2009年河北省唐山市中考数学一模试卷(解析版) 题型:解答题

(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2009年广东省揭阳市普宁市燎原中学中考数学二模试卷(解析版) 题型:解答题

(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

查看答案和解析>>

科目:初中数学 来源:2008年广东省佛山市中考数学试卷(解析版) 题型:解答题

(2008•佛山)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求出这条抛物线的函数解析式;
(3)若要搭建一个矩形“支撑架”AD+DC+CB,使C、D点在抛物线上,A、B点在地面OM上,这个“支撑架”总长的最大值是多少?

查看答案和解析>>

同步练习册答案