精英家教网 > 初中数学 > 题目详情
(2012•成都模拟)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部,再延长BG交DC于点F.
(1)判断GF与DF之长是否相等,并说明理由.
(2)若AD=
2
AB
,求
DC
DF
的值.
(3)若DC=n?DF,求
AD
AB
的值.
分析:(1)连接EF,由图形翻折变换的性质可知,∠A=∠EGB=90°,AE=EG,由HL定理可得出Rt△EGF≌Rt△EDF,故可得出结论;
(2)由AD=
2
AB,四边形ABCD是矩形,可知AD=BC=
2
CD,在Rt△BCF中利用勾股定理即可得出
DC
DF
的值;
(3)GF=DF,设DF=x,BC=y,则有GF=x,AD=y,由DC=n•DF,可知BF=BG+GF=(n+1)x,在Rt△BCF中,由BC2+CF2=BF2即可得出结论.
解答:解:(1)连接EF,
∵△BGE由△BAE翻折而成,
∴∠A=∠EGB=90°,AE=EG,
∵E是AD的中点,
∴AE=EG=DE,
∠EGF=∠D=90°
EG=DE
EF=EF

∴Rt△EGF≌Rt△EDF,
∴GF=DF;

(2)∵AD=
2
AB,四边形ABCD是矩形,
∴AD=BC=
2
CD,
在Rt△BCF中,
∵BC2+CF2=BF2,即BC2+(CD-DF)2=(
1
2
BC+DF)2,整理得
5
2
CD=(2+
2
)DF,
DC
DF
=
4+2
2
5


(3)∵GF=DF,设DF=x,BC=y,则有GF=x,AD=y
∵DC=n•DF,
∴BF=BG+GF=(n+1)x
在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2
∴y=2x
n

AD
AB
=
y
nx
=
2
n
n
点评:本题考查的是图形的翻折变换及勾股定理,熟知图形翻折不变性的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•成都模拟)设函数y=x2-(2k+1)x+2k-4的图象如图所示,它与x轴交于A,B两点,且线段OA与OB的长度之比为1:3,则k=
1
2
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都模拟)如图,已知?ABCD的对角线BD=4cm,将?ABCD绕其对称中心O旋转180°,则点D所转过的路径长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都模拟)计算
16
的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成都模拟)(1)计算:-12012+(
1
2
)-2-(tan62°+
2
π
)0
+|
27
-8sin60°|

(2)解方程:
6
x2-1
-
3
x-1
=1

(3)先化简,再求值:(
a2-5a+2
a+2
+1)÷
a2-4
a2+4a+4
,其中a=2+
3

查看答案和解析>>

同步练习册答案