精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,⊙A的半径为4,A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过C点作⊙A的切线BC交x轴于B.
(1)求直线BC的解析式;
(2)若一抛物线与x轴的交点恰为⊙A与x轴的两个交点,且抛物线的顶点在直线上y=
3
3
x+2
3
上,求此抛物线的解析式;
(3)试判断点C是否在抛物线上,并说明理由.
(1)连接AC,因为BC为⊙A的切线,
则AC=4,OA=2,∠ACB=90°
又因为∠AOC=90°,
所以∠OCA=30°,∠A=60°,∠B=30度.
所以OC=OA•tan60°=2
3
,OB=OC•cot30°=2
3
×
3
=6,
所以B(-6,0),C(0,2
3
).
设直线BC的解析式为y=kx+2
3

则0=-6k+2
3

解得k=
3
3

所以y=
3
3
x+2
3


(2)因为AE=4,OA=2,
所以OE=2,OF=6,
则E(-2,0),F(6,0).
设抛物线的解析式是y=(9x+2)(x-6),
则y=a(x-2)2-16a,
所以顶点坐标是(2,-16a).
因为(2,-16a)在直线y=
3
3
x+2
3
上,
所以-16a=
2
3
3
+2
3
,a=-
3
6

所以y=-
3
6
x2+
2
3
3
x+2
3


(3)当x=0时,y=2
3
.故点C在抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

二次函数y=-x2+kx+3的图象与x轴交于点(3,0)
(1)求函数的解析式;
(2)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
4
x2+1(如图所示).
(1)填空:抛物线的顶点坐标是(______,______),对称轴是______;
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,二次函数y=
1
2
x2+
3
4
nx+2-m
的图象与x轴交于A、B两点,与y轴交于点C,其中点A在点B的左边,若
∠ACB=90°,
CO
AO
+
BO
CO
=1

(1)求点C的坐标及这个二次函数的解析式.
(2)试设计两种方案:作一条与y轴不重合、与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的四分之一.求所截得的三角形三个顶点的坐标(说明:不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线m的解析式为y=x2-4,与x轴交于A、C两点,B是抛物线m上的动点(B不与A、C重合),且B在x轴的下方,抛物线n与抛物线m关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求证:点D一定在抛物线n上.
(2)平行四边形ABCD能否为矩形?若能为矩形,求出这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);若不能为矩形,请说明理由.
(3)若(2)中过A、B、C、D的圆交y轴于E、F,而P是弧CF上一动点(不包括C、F两点),连接AP交y轴于N,连接EP交x轴于M.当P在运动时,四边形AEMN的面积是否改变?若不变,则求其面积;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某工艺厂为配合2010年上海世博会,设计了一款成本为20元/件的工艺品投放市场进行试销.该工艺品每天试销情况经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系______;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润W最大?(利润=销售总价-成本总价).
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么工艺厂试销该工艺品每天获得的利润最大是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-x-
3
2
与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是二次函数y=-
1
2
x2+2的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )
A.4B.
16
3
C.2πD.8

查看答案和解析>>

同步练习册答案