¾«Ó¢¼Ò½ÌÍø»îÓÃ֪ʶ£¬½â¾öÎÊÌ⣮
£¨1£©ÂÖ´¬Ë³Ë®º½ÐÐ40ǧÃ×ËùÐèʱ¼äºÍÄæË®º½ÐÐ30ǧÃ×ËùÐèʱ¼äÏàµÈ£¬ÒÑ֪ˮÁ÷ËÙ¶ÈΪ3ǧÃ×/Сʱ£¬ÇóÂÖ´¬ÔÚ¾²Ë®ÖеÄËٶȣ®
£¨2£©½«Á½¿éÈ«µÈµÄº¬30¡ã½ÇµÄÈý½Ç³ßÈçͼ£¨1£©°Ú·ÅÔÚÒ»Æð£¬Éè½Ï¶ÌµÄÖ±½Ç±ßΪ1
¢ÙËıßÐÎABCDÊÇƽÐÐËıßÐÎÂð£¿Ëµ³öÄãµÄ½áÂÛºÍÀíÓÉ
 
£»
¢Ú½«Rt¡÷BCDÑØÉäÏßBD·½ÏòƽÒƵ½Rt¡÷B1C1D¢ÛλÖã¬ËıßÐÎABC1D1ÊÇƽÐб߱ßÐÎÂð£¿ËµÃ÷ÄãµÄ½áÂÛºÍÀíÓÉ
 
£»
¢ÛÔÚRt¡÷BCDÑØÉäÏßBD·½ÏòƽÒƵĹý³ÌÖУ¬µ±BµÄÒƶ¯¾àÀëΪ
 
ËıßÐÎABC1D1Ϊ¾ØÐΣ¬ÆäÀíÓÉÊÇ
 
£®

£¨3£©ÔĶÁÀí½â£º
½â·½³Ìx4-3x2+2=0£¬Éèx2=y£¬ÔòÔ­·½³Ì¿É·ÖΪy2-3y+2=0£¬½âµÃ£ºy1=2£¬y2=1£®
£¨1£©µ±y=2ʱ£¬x2=2£¬½âµÃx=¡À
2
£»
£¨2£©µ±y=1ʱ£¬x2=1£¬½âÌâx=¡À1£¬¹ÊÔ­·½³ÌµÄ½âÊÇ£ºx1=
2
£¬x2=-
2
£¬x3=1£¬x4=-1£¬ÇëÀûÓÃÒÔÉÏ·½·¨½â·½³Ì£º£¨x2-2x£©2-2x2+4x-3=0£®
·ÖÎö£º£¨1£©ÉèÂÖ´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪxǧÃ×/Сʱ£¬ÄÇô˳ˮº½ÐÐËÙ¶ÈΪ£¨3+x£©Ç§Ã×/Сʱ£¬ÄæË®º½ÐÐËÙ¶ÈΪ£¨x-3£©Ç§Ã×/Сʱ£¬¸ù¾ÝÂÖ´¬Ë³Ë®º½ÐÐ40ǧÃ×ËùÐèʱ¼äºÍÄæË®º½ÐÐ30ǧÃ×ËùÐèʱ¼äÏàµÈ¼´¿ÉÁгö·½³Ì£¬½â·½³Ì¼´¿É½â¾öÎÊÌ⣻
£¨2£©¢ÙÒÀÌâÒâÈÝÒ×ÖªµÀAB=CD£¬CB=AD£¬¸ù¾ÝƽÐÐËıßÐεÄÅж¨·½·¨¼´¿ÉÅж¨ËıßÐÎABCDÊÇƽÐÐËıßÐΣ»
¢ÚÀûÓâٵĽá¹ûÖªµÀÔÚ»¬¶¯¹ý³ÌÖУ¬Ê¼ÖÕÓÐABºÍCDƽÐÐÇÒÏàµÈ£¬ËùÒÔÀûÓÃƽÐÐËıßÐεÄÅж¨·½·¨¼´¿ÉÅж¨ËıßÐÎABC1D1ÊÇƽÐб߱ßÐΣ»
¢ÛÀûÓâ٢ڵĽáÂÛ£¬ÈÝÒ×ÖªµÀ¡ÏABD=30¡ã£¬¶ø¡ÏABC1=90¡ã£¬ËùÒÔ¿ÉÒÔÇó³ö¡ÏD1BC1=60¡ã£¬È»ºó¼´¿ÉÇó³öÏ߶ÎB1BµÄ³¤¶È£¬Ò²¾ÍÇó³öÁËBµÄÒƶ¯¾àÀ룬ÀíÓÉÊÇÔÚÖ±½ÇÈý½ÇÐÎÖУ¬30¡ãµÄ½ÇËù¶ÔÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë£®
£¨3£©Éèy=x2-2x£¬¶øÔ­·½³Ì¿É»¯Îª£¨x2-2x£©2-2£¨x2-2x£©-3=0£¬ËùÒÔÔ­·½³Ìת»»Îªy2-2y-3=0£¬È»ºó½â´Ë·½³Ì¼´¿ÉÇó³öy£¬½Ó×ÅÇó³öx£¬Ò²¾Í½â¾öÁËÎÊÌ⣮
½â´ð£º½â£º£¨1£©ÉèÂÖ´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪxǧÃ×/Сʱ£¬ÄÇô˳ˮº½ÐÐËÙ¶ÈΪ£¨3+x£©Ç§Ã×/Сʱ£¬ÄæË®º½ÐÐËÙ¶ÈΪ£¨x-3£©Ç§Ã×/Сʱ£¬
ÒÀÌâÒâµÃ
40
x+3
=
30
x-3
£¬
½âÖ®µÃx=21£¬
¾­¼ìÑéx=21ÊÇÔ­·½³ÌµÄ½â£¬
´ð£ºÂÖ´¬ÔÚ¾²Ë®ÖеÄËÙ¶ÈΪ21ǧÃ×/Сʱ£»

£¨2£©¢ÙËıßÐÎABCDÊÇƽÐÐËıßÐΣ»
¡ßAB=CD£¬CB=AD£¬
¡àËıßÐÎABCDÊÇƽÐÐËıßÐΣ»
¢ÚËıßÐÎABC1D1ÊÇƽÐб߱ßÐΣ®
ÓÉ¢ÙµÃAB¡ÎCDÇÒÏàµÈ£¬
¡àËıßÐÎABC1D1ÊÇƽÐб߱ßÐΣ»
¢ÛÓɢ٢ڵĽáÂÛ£¬ÈÝÒ×ÖªµÀ¡ÏABD=30¡ã£¬¶ø¡ÏABC1=90¡ã£¬
¡à¡ÏD1BC1=60¡ã£¬
¡à¡ÏBC1B1=30¡ã£¬
¶ø½Ï¶ÌµÄÖ±½Ç±ßΪ1£¬¼´C1B1=1£¬
¡à¸ù¾Ý¹´¹É¶¨ÀíµÃBB1=
3
3
£¬
¡àBµÄÒƶ¯¾àÀëΪ
3
3
£»

£¨3£©Éèy=x2-2x£¬¶øÔ­·½³Ì¿É»¯Îª£¨x2-2x£©2-2£¨x2-2x£©-3=0£¬
¡àÔ­·½³Ìת»»Îªy2-2y-3=0£¬
¡à½âµÃ£ºy1=3£¬y2=-1£¬
¢Ùµ±y=3ʱ£¬x2-2x=3£¬½âµÃx1=3£¬x2=-1£»
¢Úµ±y=-1ʱ£¬x2-2x=-1£¬½âÌâx3=1=x4£¬
¹ÊÔ­·½³ÌµÄ½âÊÇ£ºx1=3£¬x2=-1£¬x3=x4=1£®
µãÆÀ£º´ËÌâ±È½Ï¸´ÔÓ£¬°Ñ´úÊýºÍ¼¸ºÎ֪ʶ½áºÏÆðÀ´£¬µÚÒ»Ì⿼²éµÄÊÇÁгö·Öʽ·½³Ì½â¾öÐгÌÎÊÌ⣬µÚ¶þÌ⿼²éÔ˶¯µÄƽÐÐËıßÐεÄÐÔÖÊ£¬µÚÈýÌ⿼²éµÄÊÇÀûÓû»Ôª·¨½â¸ß´Î·½³Ì£¬¶ÔÓÚѧÉúµÄÒªÇó±È½Ï¸ß£¬Æ½³£Òª¶à×¢ÒâÕâ·½ÃæµÄѵÁ·£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

»îÓÃ֪ʶ£¬½â¾öÎÊÌ⣮
£¨1£©ÂÖ´¬Ë³Ë®º½ÐÐ40ǧÃ×ËùÐèʱ¼äºÍÄæË®º½ÐÐ30ǧÃ×ËùÐèʱ¼äÏàµÈ£¬ÒÑ֪ˮÁ÷ËÙ¶ÈΪ3ǧÃ×/Сʱ£¬ÇóÂÖ´¬ÔÚ¾²Ë®ÖеÄËٶȣ®
£¨2£©½«Á½¿éÈ«µÈµÄº¬30¡ã½ÇµÄÈý½Ç³ßÈçͼ£¨1£©°Ú·ÅÔÚÒ»Æð£¬Éè½Ï¶ÌµÄÖ±½Ç±ßΪ1
¢ÙËıßÐÎABCDÊÇƽÐÐËıßÐÎÂð£¿Ëµ³öÄãµÄ½áÂÛºÍÀíÓÉ______£»
¢Ú½«Rt¡÷BCDÑØÉäÏßBD·½ÏòƽÒƵ½Rt¡÷B1C1D¢ÛλÖã¬ËıßÐÎABC1D1ÊÇƽÐб߱ßÐÎÂð£¿ËµÃ÷ÄãµÄ½áÂÛºÍÀíÓÉ______£»
¢ÛÔÚRt¡÷BCDÑØÉäÏßBD·½ÏòƽÒƵĹý³ÌÖУ¬µ±BµÄÒƶ¯¾àÀëΪ______ËıßÐÎABC1D1Ϊ¾ØÐΣ¬ÆäÀíÓÉÊÇ______£®

£¨3£©ÔĶÁÀí½â£º
½â·½³Ìx4-3x2+2=0£¬Éèx2=y£¬ÔòÔ­·½³Ì¿É·ÖΪy2-3y+2=0£¬½âµÃ£ºy1=2£¬y2=1£®
£¨1£©µ±y=2ʱ£¬x2=2£¬½âµÃx=¡ÀÊýѧ¹«Ê½£»
£¨2£©µ±y=1ʱ£¬x2=1£¬½âÌâx=¡À1£¬¹ÊÔ­·½³ÌµÄ½âÊÇ£ºx1=Êýѧ¹«Ê½£¬x2=-Êýѧ¹«Ê½£¬x3=1£¬x4=-1£¬ÇëÀûÓÃÒÔÉÏ·½·¨½â·½³Ì£º£¨x2-2x£©2-2x2+4x-3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸