精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为  (提示:可以构造平行四边形)


  1. A.
    2<AD<14
  2. B.
    1<AD<7
  3. C.
    6<AD<8
  4. D.
    12<AD<16
B
分析:作辅助线(延长AD至点E,使AD=ED)构建平行四边形
解答:解:延长AD至点E,使AD=ED,连接BE、CE.
∵点D是BC的中点,
∴BD=CD,
∴四边形ABEC是平行四边形(对角线互相平分的四边形是平行四边形),
∴CE=AB(平行四边形的对边相等),
在△ACE中,CE-AC<AE<CE+AC,
即2<2AD<14,
1<AD<7.
故选B.
点评:本题考查了平行四边形的判定、三角形的三边关系.注意:倍长中线是常见的辅助线之一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案