£¨2013•»³¼¯ÏضþÄ££©Èçͼ£¬Õý·½ÐÎABCOµÄ±ßOA¡¢OCÔÚ×ø±êÖáÉÏ£¬µãB×ø±ê£¨3£¬3£©£¬½«Õý·½ÐÎABCOÈÆµãA˳ʱÕëÐýת½Ç¶È¦Á£¨0¡ã£¼¦Á£¼90¡ã£©£¬µÃµ½Õý·½ÐÎADEF£¬ED½»Ïß¶ÎOCÓÚµãG£¬EDµÄÑÓ³¤Ïß½»Ïß¶ÎBCÓÚµãP£¬Á¬AP¡¢AG£®
£¨1£©ÇóÖ¤£º¡÷AOG¡Õ¡÷ADG£»
£¨2£©Çó¡ÏPAGµÄ¶ÈÊý£»²¢ÅжÏÏß¶ÎOG¡¢PG¡¢BPÖ®¼äµÄÊýÁ¿¹ØÏµ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©µ±¡Ï1=¡Ï2ʱ£¬Ò»´Îº¯Êýy=kx+b¾­¹ýµãP¡¢E£¬ÇóËüµÄ½âÎöʽ£®
·ÖÎö£º£¨1£©ÓÉAO=AD£¬AG=AG£¬ÀûÓá°HL¡±¿ÉÖ¤¡÷AOG¡Õ¡÷ADG£»
£¨2£©ÀûÓã¨1£©µÄ·½·¨£¬Í¬Àí¿ÉÖ¤¡÷ADP¡Õ¡÷ABP£¬µÃ³ö¡Ï1=¡ÏDAG£¬¡ÏDAP=¡ÏBAP£¬¶ø¡Ï1+¡ÏDAG+¡ÏDAP+¡ÏBAP=90¡ã£¬ÓÉ´Ë¿ÉÇó¡ÏPAGµÄ¶ÈÊý£»¸ù¾ÝÁ½¶ÔÈ«µÈÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃ³öÏß¶ÎOG¡¢PG¡¢BPÖ®¼äµÄÊýÁ¿¹ØÏµ£»
£¨3£©ÓÉ¡÷AOG¡Õ¡÷ADG¿ÉÖª£¬¡ÏAGO=¡ÏAGD£¬¶ø¡Ï1+¡ÏAGO=90¡ã£¬¡Ï2+¡ÏPGC=90¡ã£¬µ±¡Ï1=¡Ï2ʱ£¬¿ÉÖ¤¡ÏAGO=¡ÏAGD=¡ÏPGC£¬¶ø¡ÏAGO+¡ÏAGD+¡ÏPGC=180¡ã£¬µÃ³ö¡ÏAGO=¡ÏAGD=¡ÏPGC=60¡ã£¬¼´¡Ï1=¡Ï2=30¡ã£¬½âÖ±½ÇÈý½ÇÐÎÇóOG£¬PC£¬È·¶¨P¡¢GÁ½µã×ø±ê£¬µÃ³öÖ±ÏßPEµÄ½âÎöʽ£®
½â´ð£º£¨1£©Ö¤Ã÷£º¡ß¡ÏAOG=¡ÏADG=90¡ã£¬
ÔÚRt¡÷AOGºÍRt¡÷ADGÖУ¬
AO=AD
AG=AG
£¬
¡à¡÷AOG¡Õ¡÷ADG£¨HL£©£»

£¨2£©½â£ºPG=OG+BP£®
ÓÉ£¨1£©Í¬Àí¿ÉÖ¤¡÷ADP¡Õ¡÷ABP£¬
Ôò¡ÏDAP=¡ÏBAP£¬ÓÉ£¨1£©¿ÉÖª£¬¡Ï1=¡ÏDAG£¬
ÓÖ¡Ï1+¡ÏDAG+¡ÏDAP+¡ÏBAP=90¡ã£¬
ËùÒÔ£¬2¡ÏDAG+2¡ÏDAP=90¡ã£¬¼´¡ÏDAG+¡ÏDAP=45¡ã£¬
¹Ê¡ÏPAG=¡ÏDAG+¡ÏDAP=45¡ã£¬
¡ß¡÷AOG¡Õ¡÷ADG£¬¡÷ADP¡Õ¡÷ABP£¬
¡àDG=OG£¬DP=BP£¬
¡àPG=DG+DP=OG+BP£»

£¨3£©½â£º¡ß¡÷AOG¡Õ¡÷ADG£¬
¡à¡ÏAGO=¡ÏAGD£¬
ÓÖ¡ß¡Ï1+¡ÏAGO=90¡ã£¬¡Ï2+¡ÏPGC=90¡ã£¬¡Ï1=¡Ï2£¬
¡à¡ÏAGO=¡ÏAGD=¡ÏPGC£¬
ÓÖ¡ß¡ÏAGO+¡ÏAGD+¡ÏPGC=180¡ã£¬
¡à¡ÏAGO=¡ÏAGD=¡ÏPGC=60¡ã£¬
¡à¡Ï1=¡Ï2=30¡ã£¬
ÔÚRt¡÷AOGÖУ¬AO=3£¬OG=AOtan30¡ã=
3
£¬ÔòGµã×ø±êΪ£º£¨
3
£¬0£©£¬
CG=3-
3
£¬ÔÚRt¡÷PCGÖУ¬
PC=
CG
tan30¡ã
=
3-
3
3
3
=3
3
-3£¬
ÔòPµã×ø±êΪ£º£¨3£¬3
3
-3£©£¬
ÒòΪ£¬Ò»´Îº¯Êýy=kx+b¾­¹ýµãP¡¢E£¬
Ôò
3
k+b=0
3k+b=3
3
-3
£¬
½âµÃ
k=
3
b=-3
£¬
ËùÒÔ£¬Ò»´Îº¯ÊýµÄ½âÎöʽΪy=
3
x-3£®
µãÆÀ£º±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄ×ÛºÏÔËÓ㮹ؼüÊǸù¾ÝÕý·½ÐεÄÐÔÖÊÖ¤Ã÷Èý½ÇÐÎÈ«µÈ£¬¸ù¾ÝÈý½ÇÐÎÈ«µÈµÄÐÔÖÊÇó½Ç¡¢±ßµÄ¹ØÏµ£¬ÀûÓÃÌØÊâ½Ç½âÖ±½ÇÈý½ÇÐΣ¬ÇóP¡¢GÁ½µã×ø±ê£¬È·¶¨Ö±Ïß½âÎöʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³¼¯ÏضþÄ££©ÔÚ¡÷ABCÖУ¬¡ÏA+¡ÏB=120¡ã£¬Ôò¡ÏC=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³¼¯ÏضþÄ££©¾ÅÄê¼¶£¨3£©°àÆÚÄ©¿¼ÊԺϸñ¡¢Á¼ºÃ¡¢ÓÅÐãµÄ±ÈÀýÊÇ1£º6£º3£¬Ð¡Ã÷ͬѧ»­ÁËÒ»¸ö°ë¾¶Îª2cmµÄÔ²ÐεÄͳ¼ÆÍ¼£¨Èçͼ£©£®Ôò±íʾ¡°Á¼ºÃ¡±µÄ²¿·ÖµÄÃæ»ýÊÇ
12
5
12
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³¼¯ÏضþÄ££©Èçͼ£¬ÒÑÖª·´±ÈÀýº¯Êýy=
mx
µÄͼÏó¾­¹ýµãA£¨1£¬4£©£®
£¨1£©Çó·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨2£©»­³öÕâ¸ö·´±ÈÀýº¯ÊýµÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•»³¼¯ÏضþÄ££©£¨1£©¸ù¾ÝÁ½µã×ø±ê£¬¹¹ÔìÖ±½ÇÈý½ÇÐΣ¬Çó³öÁ½Ö±½Ç±ßµÄ³¤£¬È»ºóÔÙÇóб±ßµÄ³¤£®
Á½µã×ø±ê ¹¹Ôì
Ö±½ÇÈý½ÇÐÎ
Ò»Ö±½Ç±ß³¤ ÁíÒ»Ö±½Ç
±ß³¤
б±ß³¤
A£¨1£¬-2£©
B£¨4£¬2£©
RT¡÷ABC AC=4-1=3 BC=2-£¨-2£© AB=
(4-1)2+(2-(-2))2
=5
M£¨-4£¬2£©
N£¨1£¬-3£©
RT¡÷
MPN
MPN
PN=1-£¨-4£©=5
PN=1-£¨-4£©=5
PM=2-£¨-3£©=5
PM=2-£¨-3£©=5
MN=
[1-(-4)]2+[2-(-3)]2
=5
2
[1-(-4)]2+[2-(-3)]2
=5
2
£¨2£©¹Û²ì±í¸ñÖеĹØÏµ£¬Ì½¾¿ÈÎÒâÁ½µã×ø±êP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©ÓëP1¡¢P2Ö®¼äµÄ¾àÀëP1P2ÓÐʲô¹ØÏµ£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨3£©Çóº¯Êýy=
(x-1)2+4
+
(x-4)2+4
µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸