精英家教网 > 初中数学 > 题目详情
己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线y=
1
2
x+
3
-1
经过A精英家教网点,以BC为直径的⊙M交AB于E.
(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).
分析:(1)可在直角三角形BMA中,根据等边三角形的边长和∠ABC的正弦值求出AM的长即A点的纵坐标,然后代入直线的解析式中即可求出A点的坐标;
(2)连接ME,证ME⊥OE即可.易知三角形BEM是等边三角形,那么BE=BM,根据A点的坐标可求出B点的坐标,由此可证得AB=BM,因此证出了BE=
1
2
OM,由此得证;
(3)根据圆和抛物线的对称性可知:抛物线的对称轴必过M点,因此只需找出抛物线与圆的两个交点坐标,易知:(2,1)(2,-1).据此来求抛物线的解析式.
解答:精英家教网(1)解:连接AM,在直角三角形ABM中,AB=2,∠ABC=60°,
因此BM=1,AM=
3

将y=
3
代入直线解析式中:
3
=
1
2
x+
3
-1,x=2
∴A(2,
3


(2)证明:由(1)可知:BM=1,
因此OB=OM-BM=2-1=1,
因此BM=OB
连接ME,∵MB=ME,∠ABC=60°,
∴△BME是等边三角形.
∴BE=OB=BM,
∴∠OME=∠EBM=∠BEM=60°,
∴∠OBE=120°,
∴∠EOB=∠BEO=30°,
∴∠OEM=90°,
∴OE是圆M的切线.

(3)解:当顶点在圆上时,抛物线的解析式为y=±(x2-4x+3),其他两种情况答案不唯一.
点评:本题考查了等边三角形的性质、解直角三角形、切线的判定等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线数学公式经过A点,以BC为直径的⊙M交AB于E.
(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(05)(解析版) 题型:解答题

(2001•湖州)己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线经过A点,以BC为直径的⊙M交AB于E.
(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《三角形》(04)(解析版) 题型:解答题

(2001•湖州)己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线经过A点,以BC为直径的⊙M交AB于E.
(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).

查看答案和解析>>

科目:初中数学 来源:2001年浙江省湖州市中考数学试卷(解析版) 题型:解答题

(2001•湖州)己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线经过A点,以BC为直径的⊙M交AB于E.
(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).

查看答案和解析>>

同步练习册答案