精英家教网 > 初中数学 > 题目详情
(2013•福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=
3

(1)求证:BC是⊙O的切线;
(2)求
BN
的长.
分析:(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;
(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;
其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON=
EN
sin∠EON
=
2
3
3

最后,由弧长公式l=
nπr
180
计算
BN
的长.
解答:(1)证明:如图,
∵ME=1,AM=2,AE=
3

∴ME2+AE2=AM2=4,
∴△AME是直角三角形,且∠AEM=90°.
又∵MN∥BC,
∴∠ABC=∠AEM=90°,即OB⊥BC.
又∵OB是⊙O的半径,
∴BC是⊙O的切线;

(2)解:如图,连接ON.
在Rt△AEM中,sinA=
ME
AM
=
1
2

∴∠A=30°.
∵AB⊥MN,
BN
=
BM
,EN=EM=1,
∴∠BON=2∠A=60°.
在Rt△OEN中,sin∠EON=
EN
ON

∴ON=
EN
sin∠EON
=
2
3
3

BN
的长度是:
60•π
180
2
3
3
=
2
3
9
π
点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•福州)如图,在平面直角坐标系xOy中,点A的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.
(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是
2
2
个单位长度;△AOC与△BOD关于直线对称,则对称轴是
y轴
y轴
;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是
120
120
度;
(2)连结AD,交OC于点E,求∠AEO的度数.

查看答案和解析>>

同步练习册答案