精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),求此抛物线对应的关系式及顶点坐标.

解:根据题意,得:

解得
∴此抛物线对应的关系式y=-x2+2x+
即y=-(x-2)2+
∴顶点坐标(2,).
分析:用待定系数法求a、b、c的值,根据已知两点坐标满足解析式及对称轴x==2,可列出三个方程,解方程组可求a、b、c的值,确定抛物线的一般式,写成顶点式,再确定顶点坐标.
点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识.解题时要注意二次函数的对称轴为x=-,还要注意点与函数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案