精英家教网 > 初中数学 > 题目详情

如图1,抛物线经过A(-1,0),C(3,2)两点,与轴交于点D,与轴交于另一点B。

⑴求此抛物线的解析式;

⑵若直线将四边形ABCD面积二等分,求的值;

⑶如图2,过点E(1,-1)作EF⊥轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

;⑵;⑶M(3,2),N(1,3)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,
3
),精英家教网O(0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.
(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宝安区二模)已知:如图1,抛物线经过点O、A、B三点,四边形OABC是直角梯形,其中点A在x轴上,点C在y轴上,BC∥OA,A(12,0)、B(4,8).
(1)求抛物线所对应的函数关系式;
(2)若D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.几秒钟后线段PD将梯形OABC的面积分成1﹕3两部分?并求出此时P点的坐标;
(3)如图2,作△OBC的外接圆O′,点Q是抛物线上点A、B之间的动点,连接OQ交⊙O′于点M,交AB于点N.当∠BOQ=45°时,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(32):2.3 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,),O(0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.
(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2013年安徽省中考数学模拟试卷(五)(解析版) 题型:解答题

如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,),O(0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.
(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2009年初中毕业升学考试(安徽芜湖卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中放置一直角三角板,其顶点为,将此三角板绕原点顺时针旋转,得到

(1)如图,一抛物线经过点,求该抛物线解析式;

(2)设点是在第一象限内抛物线上一动点,求使四边形的面积达到最大时点的坐标及面积的最大值.

 

查看答案和解析>>

同步练习册答案