精英家教网 > 初中数学 > 题目详情
(2012•金平区模拟)如图,已知抛物线y=ax2+bx+2与x轴交于A(-4,0)、B(1,0)两点,与y轴交于点C.
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)在抛物线的对称轴上是否存在点P,使△PBC的周长最小?若存在,请直接写出△PBC周长的最小值与点P的坐标;若不存在,请说明理由.
分析:(1)把点A、B的坐标代入函数解析式,利用待定系数法求二次函数解析式解答即可,把函数解析式整理成顶点式形式,然后写出顶点坐标;
(2)根据二次函数解析式求出点C的坐标,然后求出OA、OB、OC的长,再求出AB,利用勾股定理列式求出BC2、AC2,然后根据勾股定理逆定理解答;
(3)根据轴对称确定最短路线问题,AC与对称轴的交点即为所求的点P,利用勾股定理列式求出AC的长,则周长最小值=AC+BC,再求出直线AC的解析式,然后把顶点的横坐标代入解析式计算求出y值,即可得到点P的坐标.
解答:解:(1)∵抛物线y=ax2+bx+2与x轴交于A(-4,0)、B(1,0)两点,
0=16a-4b+2
0=a+b+2

解得
a=-
1
2
b=-
3
2

∴抛物线的解析式为y=-
1
2
x2-
3
2
x+2,
∵y=-
1
2
x2-
3
2
x+2=-
1
2
(x2+3x+
9
4
-
9
4
)+2=-
1
2
(x+
3
2
2+
25
8

∴顶点D的坐标为(-
3
2
25
8
);

(2)△ABC是直角三角形.
证明如下:当x=0时y=2,∴C(0,2),OC=2,
∵A(-4,0)、B(1,0),
∴OA=4,OB=1,AB=5,
∴AB2=25,
在Rt△AOC与Rt△BOC中,
AC2=OA2+OC2=20,BC2=OC2+OB2=5,
∴AC2+BC2=AB2
∴△ABC是直角三角形;

(3)存在.
∵A、B关于对称轴直线x=-
3
2
对称,
∴AC与对称轴的交点即为点P,
根据勾股定理,AC=
42+22
=2
5

∵BC2=OC2+OB2=5,
∴BC=
5

∴最小周长=PB+PC+BC=AP+PC+BC=AC+BC=2
5
+
5
=3
5

设直线AC的解析式为y=kx+m,
-4k+m=0
m=2

解得
k=
1
2
m=2

所以,直线AC的解析式为y=
1
2
x+2,
x=-
3
2
时,y=
1
2
×(-
3
2
)+2=
5
4

所以,点P的坐标为(-
3
2
5
4
).
点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,顶点坐标的求解,勾股定理逆定理的应用,利用轴对称确定最短路线问题,(3)根据轴对称的性质确定出点P的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•金平区模拟)如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S1=
1
4
1
4
,Sn=
n
2(n+1)
n
2(n+1)
(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)计算:
12
-(-
1
2
)0-cos30°+|
3
2
-2|

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)在一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数不小于22的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•金平区模拟)如图,半圆O的直径AB=10,弦AC=8,过A作直线PQ,若∠PAC=∠ABC.
(1)求证:PQ是半圆O的切线;
(2)若点M从点C出发,沿线段CA向点A运动,N从点A出发,沿射线AP方向运动,两点同时出发,速度都为每秒1个单位长度,点M运动到A即停止,设运动时间为t秒.
①设△AMN的面积为S,求S与t之间的函数关系式,并求t为何值时,△AMN的面积最大,最大值是多少?
②当△AMN为等腰三角形时,求运动时间t的值.

查看答案和解析>>

同步练习册答案