精英家教网 > 初中数学 > 题目详情

在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点Cl落在直线BC上(点Cl与点C不重合),
(1)如图,当∠C>60°时,写出边ABl与边CB的位置关系,并加以证明;
(2)当∠C=60°时,写出边ABl与边CB的位置关系(不要求证明);
(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.

解:(1)AB1∥BC.
证明:由已知得△ABC≌△AB1C1
∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,
∵AC1=AC,
∴∠AC1C=∠ACC1
∵∠C1AC+∠AC1C+∠ACC1=180°,
∴∠C1AC=180°-2∠ACC1
同理,在△ABC中,
∵BA=BC,
∴∠ABC=180°-2∠ACC1
∴∠ABC=∠C1AC=∠B1AB,
∴AB1∥BC.

(2)如图1,∠C=60°时,AB1∥BC.

(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.
证明:显然△ABC≌△AB1C1
∴∠BAC=∠B1AC1
∴∠B1AB=∠C1AC,
∵AC1=AC,
∴∠AC1C=∠ACC1
∵∠C1AC+∠AC1C+∠ACC1=180°,
∴∠C1AC=180°-2∠ACC1
同理,在△ABC中,
∵BA=BC,
∴∠ABC=180°-2∠ACC1
∴∠ABC=∠C1AC=∠B1AB,
∴AB1∥BC.
分析:(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.
(2)当∠C=60°时,写出边ABl与边CB的位置关系也是平行,证明方法同(1)题.
(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.
点评:考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案