试题分析:(1)①PC=PD;②过P作PH⊥OA,PN⊥OB,再证△PCH≌△PDN,即可;
(2)分两种情况进行讨论:①若PD与边OB相交;②PD与边OB的反向延长线相交.
试题解析:(1)①PC=PD;
②过P作PH⊥OA,PN⊥OB,垂足分别为H,N,得∠HPN=90°,
∴∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°,
∴∠HPC=∠NPD,
∵OM是∠AOB的平分线,
∴PH=PN.
又∵∠PHC=∠PND=90°
∴△PCH≌△PDN,
∴PC=PD;
(2)①若PD与边OB相交
∵∠PCE>∠DCO,∠CPE=∠DOC=90°
∴由△PCE与△OCD相似可得∠PEC=∠DCO
∴DE=CD,而DO⊥OC,
∴OE="OC=1"
∴OP为Rt△CPE斜边上的中线
∴OP=
EC="OC=1" ;
②若PD与边OB的反向延长线相交, 过P作PH⊥OA,PN⊥OB,垂足分别为H,N, 则PH=PN
∵△PCE与△DCO相似,且∠PEC>∠OCD,∠CPE=∠DOC=90°
∴∠PCE=∠OCD
又∵∠PCO+∠PEC=90°,∠PDO +∠OED =90°,
且∠PEC=∠OED,∴∠PDO=∠PCO.
而PH=PN,∴Rt△PHC≌Rt△PND(A.A.S).
∴HC=ND,PC=PD, ∴∠PCD= ∠PDC =45°,
∴∠PCO=∠DCO=∠PDO =22.5°
又∠BOM=∠ODP+∠OPD=45°,
∴∠ODP=∠OPD=22.5°
∴OP=OD,
设OP=x,则HC=OC-OH=
,
而DN=DO+ON=OP+ON=
, ∴
,
∴
,即OP=
,
综上所述,满足条件的OP=1或OP=
.