精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
(1)∵点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,
∴OP=t,而OC=2,
∴P(t,0),
设CP的中点为F,
则F点的坐标为(
t
2
,1),
∴将线段CP的中点F绕点P按顺时针方向旋转90°得点D,其坐标为(t+1,
t
2
);

(2)∵D点坐标为(t+1,
t
2
),OA=4,
∴S△DPA=
1
2
AP×
t
2
=
1
2
(4-t)×
t
2
=
1
4
(4t-t2)=-
1
4
(t-2)2+1,
∴当t=2时,S最大=1;

(3)能构成直角三角形.
①当∠PDA=90°时,PCAD,

由勾股定理得,PD2+AD2=AP2
即(
t
2
2+1+(4-t-1)2+(
t
2
2=(4-t)2
解得,t=2或t=-6(舍去).
∴t=2秒.
②当∠PAD=90°时,此时点D在AB上,

可知,△COP△PAD,
CP
PD
=
CO
PA

2
1
=
2
PA

PA=1,
即t+1=4,t=3秒.
综上,可知当t为2秒或3秒时,△DPA能成为直角三角形.

(4)∵根据点D的运动路线与OB平行且相等,OB=2
5

∴点D运动路线的长为2
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+4的对称轴为x=-1,且与x轴相交于点A、B,与y轴相交于点C,其中点A的坐标为(-3,0),
(1)求该抛物线的解析式;
(2)若该抛物线的顶点为D,求△ACD的面积;
(3)在抛物线的对称轴上是否存在点P,使得以A、B、C、P为顶点的四边形是梯形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

仔细阅读并完成下题:
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”;如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,已知“蛋圆”是由抛物线y=ax2-2ax+c的一部分和圆心为M的半圆合成的.点A、B、C分别是“蛋圆”与坐标轴的交点,已知点A的坐标为(-1,0),AB为半圆的直径,
(1)点B的坐标为(______,______);点C的坐标为(______,______),半圆M的半径为______;
(2)若P是“蛋圆”上的一点,且以O、P、B为顶点的三角形是等腰直角三角形求符合条件的点P的坐标,以及所对应的a的值;
(3)已知直线y=x-
7
2
是“蛋圆”的切线,求满足条件的抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0,其中错误的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=-x2+x+a(a<0),当自变量x取m时,其相应的函数值大于0,那么x取m-1时下列结论中正确的是(  )
A.m-1的函数值小于0
B.m-1的函数值大于0
C.m-1的函数值等于0
D.m-1的函数值与0的大小关系不确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于二次函数y=x2+2,当x=______时,二次函数的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列模拟掷硬币的试验不正确的是(  )
A.用计算器随机地取数,取奇数相当于正面朝上,取偶数相当于硬币正面朝下
B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,摸出2表示硬币正面朝下
C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,抽到黑色牌表示硬币正面朝下
D.将1,2,3,4,5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数表示硬币正面朝上,取到偶数表示硬币正面朝下

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图.用长为18cm的篱笆(虚线部分),两面靠墙围成矩形的苗圃,设矩形的一边长为x(m),面y(m2),当x=______时,所围苗圃面积最大.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直角梯形纸片OABC在平面直角坐标系中的位置如图①所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2
3
),C(0,2
3
),点P在线段OA上(不与O、A重合),将纸片折叠,使点A落在射线AB上(记为点A’),折痕PQ与射线AB交于点Q,设OP=x,折叠后纸片重叠部分的面积为y.(图②供探索用)
(1)求∠OAB的度数;
(2)求y与x的函数关系式,并写出对应的x的取值范围;
(3)y存在最大值吗?若存在,求出这个最大值,并求此时x的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案