精英家教网 > 初中数学 > 题目详情
(2013•徐州模拟)如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.
(1)求港口A到海岛B的距离;
(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?
分析:(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC之间的关系列出方程求解.
(2)分别求得两船看见灯塔的时间,然后比较即可.
解答:解:(1)过点B作BD⊥AE于D
在Rt△BCD中,∠BCD=60°,设CD=x,则BD=
3
x
,BC=2x
在Rt△ABD中,∠BAD=45°
则AD=BD=
3
x
,AB=
2
BD=
6
x

由AC+CD=AD得20+x=
3
x
解得:x=10
3
+10
故AB=30
2
+10
6

答:港口A到海岛B的距离为30
2
+10
6
海里.

(2)甲船看见灯塔所用时间:
30
2
+10
6
-5
15
≈4.1
小时
乙船看见灯塔所用时间:1+
1
2
+
20
3
+20-5
20
≈4.0
小时
所以乙船先看见灯塔.
点评:此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•徐州模拟)若圆锥的高为8,底面半径为6,则圆锥的侧面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=
2
5
2
5

(2)求B、C两点的坐标及图2中OF的长;
(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)分解因式:9a2-b2=
(3a+b)(3a-b)
(3a+b)(3a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)
1
4
的倒数等于(  )

查看答案和解析>>

同步练习册答案