精英家教网 > 初中数学 > 题目详情

如下3个图形中,长方形的长都为4cm,宽都为2cm,先通过计算,然后判断3个图形中灰色部分面积的大小有什么关系(π取3.14)?

解:第一个的灰色部分面积是长方形与半圆的差:2×4-π×22=1.72cm2
第二个为长方形与两个小圆的差:2×4-2π×12=1.72cm2
第三个为长方形与八个小圆的差:2×4-8π×(2=1.72cm2
∴它们都相等.
分析:第一个的灰色部分面积是长方形与半圆的差;第二个为长方形与两个小圆的差;第三个为长方形与八个小圆的差;分别求出它们的值后再比较即可得到结论.
点评:本题考查了长方形与圆的面积公式,灰色部分面积是两种图形面积的差.此题是代数式在实际生活中的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×
12
ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

探索与研究:
中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个全等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:
S正方形EFGH=c2=(a-b)2+4×数学公式ab
所以a2+b2=c2
(1)你能用下面的图形也来验证一下勾股定理吗?试一试!
(2)你自己还能设计一种方法来验证勾股定理吗?

查看答案和解析>>

同步练习册答案