精英家教网 > 初中数学 > 题目详情
(2012•常德)如图,已知AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心OB为半径作圆,且⊙O过A点,过A作AD∥BC交⊙O于D,
求证:(1)AC是⊙O的切线;
(2)四边形BOAD是菱形.
分析:(1)根据等腰三角形性质和技术性的内角和定理求出∠ABC和∠C的度数,求出∠BAO,求出∠OAC=90°,根据切线的判定求出即可;
(2)连接AE,求出∠AEB的度数,根据平行线求出∠DAO,根据圆内接四边形性质求出∠D,根据四边形的内角和定理求出∠DAO,根据平行四边形的判定得出平行四边形BOAD,根据菱形的性质求出即可.
解答:(1)证明:∵AB=AC,∠BAC=120°,
∴∠ABC=∠C=
1
2
(180°-∠BAC)=30°,
∵OA=OB,
∴∠ABO=∠BAO=30°,
∴∠OAC=120°-30°=90°,
即OA⊥AC,
∵OA为⊙O的半径,
∴AC是⊙O的切线.

(2)证明:连接AE,
∵∠AOB=∠C+∠OAC=30°+90°=120°,
∴由圆周角定理得:∠AEB=
1
2
∠AOB=60°,
∵D、B、E、A四点共圆,
∴∠D+∠AEB=180°,
∴∠ADB=120°,
∵AD∥BC,
∴∠DAO+∠BOA=180°,
∴∠DAO=60°,
∴∠DBO=360°-60°-120°-120°=60°,
即∠D=∠BOA,∠DBO=∠DAO,
∴四边形BOAD是平行四边形,
∵OA=OB,
∴平行四边形BOAD是菱形.
点评:本题考查的知识点有等腰三角形性质、三角形的内角和定理、切线的判定、平行四边形的判定、平行线性质、菱形的判定、圆周角定理、圆内接四边形,本题主要考查了学生的推理能力,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•常德)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常德)如图所给的三视图表示的几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常德)如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里∕小时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•常德)如图,已知二次函数y=
148
(x+2)(ax+b)
的图象过点A(-4,3),B(4,4).
(1)求二次函数的解析式:
(2)求证:△ACB是直角三角形;
(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案