精英家教网 > 初中数学 > 题目详情
(2012•青海)-
1
2
的相反数是
1
2
1
2
;计算a2•a3=
a5
a5
分析:根据相反数的定义及同底数幂的乘法法则,进行运算即可.
解答:解:-
1
2
的相反数为
1
2
,a2•a3=a2+3=a5
故答案为:
1
2
、a5
点评:此题考查了同底数幂的乘法及相反数的定义,属于基础题,解答本题的关键是掌握相反数的定义及同底数幂的乘法法则.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•青海)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:CD=AN;
②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青海)下列图形中,既是轴对称图形,又是中心对称图形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青海)2012年3月,青海省财政下达农牧区学生营养改善计划补助资金265000000元,用于改善我省农牧区义务教育阶段中小学生的营养状况,该补助资金用科学记数法表示为
2.65×108
2.65×108
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青海)函数y=
x+4
x-2
中,自变量x的取值范围是
x≥-4且x≠2
x≥-4且x≠2

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.
(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:
证明:如图1,取AB的中点M,连接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵点E,M分别为正方形的边BC和AB的中点
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分线
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.

查看答案和解析>>

同步练习册答案