精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O是边长为2的等边三角形ABC的内切圆,则图中阴影部分的面积为
 
分析:先求出三角形ABC的面积,从而求出内切圆的半径,进而可求出圆的面积.图中阴影部分的面积=S△ABC-S⊙O
解答:精英家教网解:连接OA,OD(AB上的内切点).
由于等边三角形的内心就是它的外心,可得AD=
1
2
AB=1,∠OAB=
1
2
∠CAB=30°;
在Rt△OAD中,tan30°=
OD
AD
,即
3
3
=
OD
1
,得0D=
3
3

∴图中阴影部分的面积等于S△ABC-S⊙O=
3
4
×22-π(
3
3
2=
3
-
1
3
π.
点评:本题考查等边三角形的性质及内切圆的概念和计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,O是边长为6的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于F,OE∥AC,交BC于E.则OD+OE+OF的值(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A
 
,B
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为2
3
的等边三角形,点E、F分别在CB和BC的延长线上,且∠EAF=120°,设BE=x,CF=y.求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论;
(2)求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AO是边长为2的等边△ABC的高,点D是AO上的一个动点(点D不与点A、O重合),以CD为一边在AC下方作等边△CDE,连结BE并延长,交AC的延长线于点F.
(1)求证:△ACD≌△BCE;
(2)当△CEF为等腰三角形时:
①求∠ACD的度数;
②求△CEF的面积.

查看答案和解析>>

同步练习册答案