精英家教网 > 初中数学 > 题目详情

已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y轴正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.

(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.


KD=DE=EF;点M的坐标分别为(﹣2,),(﹣1,)时,
△MCK为等腰三角形.      

解析试题分析:(1)解法1:由题意易知:△BOC∽△COA,
,即,∴
∴点C的坐标是(0,),                           2分
由题意,可设抛物线的函数解析式为
把A(1,0),B(﹣3,0)的坐标分别代入
,解这个方程组,得
∴抛物线的函数解析式为. .4分
(2)解法1:截得三条线段的数量关系为KD=DE=EF.
理由如下:
可求得直线l1的解析式为
直线l2的解析式为
抛物线的对称轴为直线x=-1,                                 6分
由此可求得点K的坐标为(﹣1,),
点D的坐标为(﹣1,),点E的坐标为(﹣1,),点F的坐标为(﹣1,0).
∴KD=,DE=,EF=
∴KD=DE=EF.                                                8分
(3)当点M的坐标分别为(﹣2,),(﹣1,)时,△MCK为等腰三角形.
理由如下:
(i)连接BK,交抛物线于点G,易知点G的坐标为(﹣2,),

又∵点C的坐标为(0,),则GC∥AB,
∵可求得AB=BK=4,且∠ABK=60°,即△ABK为正三角形,
∴△CGK为正三角形
∴当l2与抛物线交于点G,即l2∥AB时,符合题意,此时点M1的坐标为(﹣2,),            10分
(ii)连接CD,由KD=,CK=CG=2,∠CKD=30°,易知△KDC为等腰三角形,
∴当l2过抛物线顶点D时,符合题意,此时点M2坐标为(﹣1,), .12分
(iii)当点M在抛物线对称轴右边时,只有点M与点A重合时,满足CM=CK,
但点A、C、K在同一直线上,不能构成三角形,
综上所述,当点M的坐标分别为(﹣2,),(﹣1,)时,
△MCK为等腰三角形.      
考点:相似三角形的判定
点评:解答本题的的关键是熟练掌握有两组角对应相等的两个三角形相似;两组边对应成比例且夹角相等的三角形相似

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知两直线l1和l2相交于点A(2,1),且直线l2经过坐标原点,若OA=OB
(1)求l1和l2的函数关系式;
(2)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两直线L1和L2,直线L1的解析式是y=x+4,且直线L1与x轴交于点C,直线L2经过A,精英家教网B两点,两直线相交于点A.
(1)求点C的坐标;
(2)求直线L2的解析式;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两直线l1,l2分别经过点A(3,0),点B(-1,0),并且当两直线同时相交于y负半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点D,如图所示.
(1)求证:△AOC∽△COB;
(2)求出抛物线的函数解析式;
(3)当直线l1绕点C顺时针旋转α(0°<α<90°)时,它与抛物线的另一个交点为P(x,y),求四边形APCB面积S关于x的函数解析式,并求S的最大值;
(4)当直线l1绕点C旋转时,它与抛物线的另一个交点为E,请找出使△ECD为等腰三角形的点E,并求出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成华区一模)已知两直线l1、l2分别经过点A(3,0),点B(-1,0),并且当两条直线同时相交于y轴负半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的
32
倍?若存在,求出点P的坐标;若不存在,请说明理由.
(3)将直线l1按顺时针方向绕点C旋转α°(0<α<90),与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时的α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知两直线L1和L2,直线L1的解析式是y=x-4,且直线L1与x轴交于点C,直线L2经过A、B两点,两直线相交于点A.
(1)求直线L2的解析式:
(2)根据图象可得,当x
>0
>0
时,直线L1对应的函数值大于直线L2对应的函数值;
(3)△ABC的面积为
12
12

查看答案和解析>>

同步练习册答案