精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由.

解:(1)∵二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,

解得
∴二次函数的解析式为y=-x2-x+2;

(2)令x=0,则y=2,
∴点C(0,2),
设直线AC的解析式为y=kx+m(k≠0),

解得
∴直线AC的解析式为y=x+2,
由三角形的面积可知,平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,
此时设过点P的直线为y=x+n,
联立
消掉y得,-x2-x+2=x+n,
整理得,2x2+6x-6+3n=0,
△=62-4×2×(-6+3n)=0,
解得n=
此时x1=x2=-=-
y=×(-)+=
∴点P(-)时,△ACP的面积最大;

(3)存在点Q(-2,2)或(-)使以点B、Q、E为顶点的三角形与△AOC相似.
理由如下:设点E的横坐标为c,则点Q的坐标为(c,-c2-c+2),
BE=1-c,
①OA和BE是对应边时,∵△BEQ∽△AOC,
=
=
整理得,c2+c-2=0,
解得c1=-2,c2=1(舍去),
此时,-×(-2)2-×(-2)+2=2,
点Q(-2,2);
②OA和QE是对应边时,∵△QEB∽△AOC,
=
=
整理得,4c2-c-3=0,
解得c1=-,c2=1(舍去),
此时,-×(-2-×(-)+2=
点Q(-),
综上所述,存在点Q(-2,2)或(-)使以点B、Q、E为顶点的三角形与△AOC相似.
分析:(1)把点A、B的坐标代入二次函数解析式,利用待定系数法求二次函数解析式解答;
(2)先求出点C的坐标,再利用待定系数法求出直线AC的解析式,然后判断出平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,再联立直线与二次函数解析式,消掉y,利用根的判别式△=0时方程只有一个根求解即可;
(3)设点E的横坐标为c,表示出BE、QE,然后根据相似三角形对应边成比例,分OA和BE,OA和QE是对应边两种情况列出比例式求解即可.
点评:本题考查了二次函数综合题型,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,三角形的面积,相似三角形对应边成比例的性质,(2)判断出与AC平行的直线与二次函数图象只有一个交点时三角形的面积最大是解题的关键,(3)要分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案