精英家教网 > 初中数学 > 题目详情
(2007•衢州)如图,已知直线l的解析式是y=x-4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,则该圆运动的时间为( )

A.3秒或6秒
B.6秒
C.3秒
D.6秒或16秒
【答案】分析:由y=x-4可以求出与x轴、y轴的交点A(3,0)、B(0,-4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C运动的距离和运动的时间.
解答:解:如图,∵x=0时,y=-4,
y=0时,x=3,
∴A(3,0)、B(0,-4),
∴AB=5,
当C在B上方,直线与圆相切时,连接CD,
则C到AB的距离等于1.5,
∴CB=1.5÷sin∠ABC=1.5×=2.5;
∴C运动的距离为:1.5+(4-2.5)=3,运动的时间为:3÷0.5=6;
同理当C在B下方,直线与圆相切时,
连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.
故选D.
点评:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2007•衢州)如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2009年河南省周口市扶沟县中考数学模拟试卷(一)(解析版) 题型:解答题

(2007•衢州)如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省衢州市中考数学试卷(解析版) 题型:解答题

(2007•衢州)如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A、B两点,与y轴相交于点C,连接BC,已知tan∠ABC=1.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)在x轴上找一点P,使△CDP的周长最小,并求出点P的坐标;
(3)若点E(x,y)是抛物线上不同于A,B,C的任意一点,设以A,B,C,E为顶点的四边形的面积为S,求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2007年浙江省衢州市中考数学试卷(解析版) 题型:选择题

(2007•衢州)如图,已知直线l的解析式是y=x-4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,则该圆运动的时间为( )

A.3秒或6秒
B.6秒
C.3秒
D.6秒或16秒

查看答案和解析>>

同步练习册答案