精英家教网 > 初中数学 > 题目详情

对于一元二次方程ax2+bx+c=0(a≠0).下列说法:
①若△=b2-4ac>0,那cx2+bx+a=0么一定有两个不相等的实数根;
②若a+b+c=0,那么ax2+bx+c=0一定有一个根是1;
③若x0是ax2+bx+c=0的一个根,那么△=数学公式
④若b2>5ac,那么ax2+bx+c=0一定有两个不相等的实数根.
其中正确的说法的个数是


  1. A.
    4个
  2. B.
    3个
  3. C.
    2个
  4. D.
    1个
B
分析:①△=b2-4ac>0,判断方程cx2+bx+a=0也一定有两个不等的实数根,只要证明方程的判别式的值大于0即可;
②若x=1是方程ax2+bx+c=0的一个根,则代入即可作出判断;
③难度较大,用到了求根公式表示x0
④根据b2>5ac可以得到b2-4ac>0,从而证得方程ax2+bx+c=0一定有两个不相等的实数根.
解答:①△=b2-4ac>0,所以方程cx2+bx+a=0有两个不相等的实数根,而当c=0时却只有一个实数根,故错误;
②∵么ax2+bx+c=0一定有一个根是1,
∴a+b+c=0;
③若x0是一元二次方程ax2+bx+c=0的根,可得x0=
把x0的值代入(2ax0+b)2,可得b2-4ac=(2ax0+b)2;

④∵b2>5ac,
∴b2-5ac>0,
∴b2-4ac>0,
∴方程ax2+bx+c=0一定有两个不相等的实数根.
故选B.
点评:此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示x0,整体代入求b2-4ac=(2ax0+b)2
总结:一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:044

有一根为1的一元二次方程

对于关于x的一元二次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

由于a+b+c=0,则c=-a-b

将c=-a-b代入原方程,得ax2+bx-a-b=0.

即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,x1=________,x2=________;

(2)7x2-4x-3=0,x1=________,x2=________;

(3)13x2+7x-20=0,x1=________,x2=________;

(4)x2-(+1)x+=0,x1=________,x2=________;

(5)2004x2-2003x-1=0,x1=________,x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),x1=________,x2=________;

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:022

有一根为1的一元二次方程

  对于关于x的一元一次方程ax2+bx+c=0(a≠0),如果a+b+c=0,那么它的两个根分别为x1=1,x2.说明如下:

  由于a+b+c=0,则c=-a-b

  将c=-a-b代入原方程,得ax2+bx-a-b=0.

  即a(x2-1)+b(x-1)=0,所以(x-1)(ax+a+b)=0

  解得x1=1,x2

请利用上面推导出来的结论,快速求解下列方程:

(1)3x2-5x+2=0,       (2)7x2-4x-3=0,

x1=________,x2=________;  x1=________,x2=________;

(3)13x2+7x-20=0,      (4)x2-(+1)x+=0,

x1=________,x2=________;  x1=________,x2=________;

(5)2004x2-2003x2-1=0,x1=________;x2=________;

(6)(b-c)x2+(c-a)x+(a-b)=0(b≠c),

x1=________,x2=________.

(7)请你写出3个一元二次方程,使它们都有一个根是1.

查看答案和解析>>

同步练习册答案