精英家教网 > 初中数学 > 题目详情

如图,二次函数y=-数学公式x2+mx+m+数学公式的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.
(1)当m=数学公式时,求tan∠ADH的值;
(2)当60°≤∠ADB≤90°时,求m的变化范围;
(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC的距离.

解:(1)∵当m=时,y=-x2+x+2=-(x-2+
∴顶点D(),与x轴的交点A(-1,0),B(4,0),
∴DH=,AH=-(-1)=
∴tan∠ADH===

(2)y=-x2+mx+m+=-(x-m)2+
∴顶点D(m,),
令y=-x2+mx+m+=0,解得:x=-1或2m+1
则与x轴的交点A(-1,0),B(2m+1,0),
∴DH=,AH=m-(-1)=m+1,
∴tan∠ADH==
当60°≤∠ADB≤90°时,由对称性得30°≤∠ADH≤45°,
∴当∠ADH=30°时,=
∴m=2-1,
当∠ADH=45°时,=1,
∴m=1,
∴1≤m≤2-1;

(3)设DH与BC交于点M,则点M的横坐标为m.
设过点B(2m+1,0),C(0,m+)的直线解析式为;y=kx+b,

解得
即y=-x+m+
当x=m时,y=-m+m+=
∴M(m,).
∴DM=-=,AB=(2m+1)-(-1)=2m+2,
又,∵S△DBC=S△ABC
•(2m+1)=(2m+2)•(m+),
又∵抛物线的顶点D在第一象限,
∴m>0,解得m=2.
当m=2时,A(-1,0),B(5,0),C(0,),
∴BC==
∴S△ABC=×6×=
设点D到直线BC的距离为d.
∵S△DBC=BC•d,
וd=
∴d=
答:点D到直线BC的距离为
分析:(1)先将m=代入y=-x2+mx+m+,运用配方法改写成顶点式,求出顶点D,与x轴的交点A与B的坐标,得到DH,AH的长度,再根据正切函数的定义即可求出tan∠ADH的值;
(2)先将y=-x2+mx+m+运用配方法改写成顶点式,求出顶点D,与x轴的交点A与B的坐标,得到DH,AH的长度,再由抛物线的对称性可知当60°≤∠ADB≤90°时,30°≤∠ADH≤45°,然后根据30°,45°角的正切函数值及锐角三角函数的增减性即可求出m的变化范围;
(3)设DH与BC交于点M,则点M的横坐标为m.先运用待定系数法求出直线BC的解析式,则可用含m的代数式表示点M的坐标,再根据S△DBC=S△ABC求出m的值,从而得出A(-1,0),B(5,0),C(0,),S△ABC=×6×=.设点D到直线BC的距离为d,根据S△DBC=BC•d=,即可求出d的值.
点评:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求函数的解析式,抛物线的顶点坐标公式,正切函数的定义,三角形的面积以及点到直线的距离的求法,综合性较强,有一定难度.其中(3)正确表示S△DBC=DM•OB,从而根据S△DBC=S△ABC求出m的值是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数的图象经过点D(0,
7
9
3
),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数图象的顶点为坐标原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图象与y相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于点A(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:
(1)求累积利润s(万元)与时间t(月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达30万元;
(3)从第几个月起公司开始盈利?该月公司所获利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b
0(填“>”、“<”、“=”);
(2)当x满足
x<-4或x>2
x<-4或x>2
时,ax2+bx+c>0;
(3)当x满足
x<-1
x<-1
时,ax2+bx+c的值随x增大而减小.

查看答案和解析>>

同步练习册答案