精英家教网 > 初中数学 > 题目详情
已知:在面积为7的梯形ABCD中,AD∥BC,AD=3,BC=4,P为边AD上不与A、D重合精英家教网的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F,则△PEF面积最大值是
 
分析:设PD=x,S△PEF=y.根据平行线的性质、全等三角形的判定及相似三角形的判定,证明△PEF≌△QFE、△AEP∽△AQD、△PDF∽△ADQ,相似三角形的面积比是相似比的平方,再由三角形AQD与梯形ABCD的面积公式求得梯形的高,代入S△PEF=(S△AQD-S△DPF-S△APE)÷2,得出关于x的二次函数方程,根据顶点坐标公式,求得则△PEF面积最大值.
解答:精英家教网解:设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,
∵AD=3,BC=4,梯形ABCD面积为7,
z=
1
2
×3×h
7=
1
2
(3+4)h

解得
h=2
z=3

∵PE∥DQ,
∴∠PEF=∠QFE,∠EPF=∠PFD,
又∵PF∥AQ,
∴∠PFD=∠EQF,
∴∠EPF=∠EQF,
∵EF=FE,
∴△PEF≌△QFE(AAS),
∵PE∥DQ,
∴△AEP∽△AQD,
同理,△DPF∽△DAQ,
S△AEP
S△AQD
=(
3-x
3
)
2
S△DPF
S△DAQ
=(
x
3
2
∵S△AQD=3,∴S△DPF=
1
3
x2
S△APE=
1
3
(3-x)2
∴S△PEF=(S△AQD-S△DPF-S△APE)÷2,
∴y=[3-
1
3
x2-
1
3
(3-x)2
1
2
=-
1
3
x2+x,
∵y最大值=
0-12
4×(-
1
3
)
=
3
4
,即y最大值=
3
4

∴△PEF面积最大值是
3
4
点评:本题综合考查了二次函数的最值、三角形的面积、梯形的面积以及相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•通州区一模)已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点B、A、E恰好在同一条直线上,连接CE.
(1)则四边形DBCE是
形(填写:平行四边形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,请你求出四边形DBCE的面积.

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期相交线与平行线专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

同步练习册答案