精英家教网 > 初中数学 > 题目详情

已知:如图,Rt△ABC中,∠C=90°,∠B=30°,数学公式,以A点为圆心,AC长为半径作数学公式,求∠B与数学公式围成的阴影部分的面积.

解:∵Rt△ABC中,∠C=90°,∠B=30°,
∴AC=BC•tan∠B=4×=4,
∴∠A=90°-∠B=90°-30°=60°,
∴S阴影=S△ABC-S扇形ACD=AC•BC-=×4×4-=8-
答:阴影部分的面积为:8-
分析:先根据锐角三角函数的定义求出BC的长,再由直角三角形的性质求出∠A的度数,再根据S阴影=S△ABC-S扇形ACD进行计算即可.
点评:本题考查的是扇形面积的计算及直角三角形的性质,熟知三角形及扇形的面积公式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连接两条线段,如果你所连接的两条线段满足相等,垂直或平行关系中的一种,那么请你把它写出来并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,且不与A、B两点重合,AE⊥AB,AE=BD,连接DE、DC.
(1)求证:△ACE≌△BCD;
(2)猜想:△DCE是
等腰直角
三角形;并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O精英家教网C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,点E是AC的中点.
求证:∠EBD=∠EDB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,Rt△ABC中,∠C=90°,M是AB的中点,AM=AN,MN∥AC.
求证:MN=AC.

查看答案和解析>>

同步练习册答案